/**
This file is a part of rexy's matrix client
Copyright (C) 2019 rexy712
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see .
*/
#ifndef RAII_STRING_BASE_HPP
#define RAII_STRING_BASE_HPP
#include //size_t
#include //strlen, strcpy
#include //memcpy
#include //is_same, integral_contant, enable_if, etc
#include //forward
#include
namespace raii{
class string_expr{};
class string_base;
namespace detail{
std::true_type is_string_helper(string_expr);
std::false_type is_string_helper(...);
template
struct is_string{
static constexpr bool value = std::is_same()))>::value;
};
std::true_type is_string_base(string_base*);
std::false_type is_string_base(...);
template
struct is_concrete_string{
static constexpr bool value = std::is_same::type*>()))>::value;
};
template
std::true_type is_tuple_helper(std::tuple);
std::false_type is_tuple_helper(...);
template
struct is_tuple{
static constexpr bool value = std::is_same()))>::value;
};
}
//Base of all RAII strings. Its use is allowing passing of raii strings to functions without knowing the exact type
class string_base : public string_expr
{
protected:
size_t m_length = 0;
char* m_data = nullptr;
protected:
constexpr string_base(void) = default;
constexpr string_base(size_t len):
m_length(len){}
//Initialize without copying
constexpr string_base(char* data, size_t len):
m_length(len), m_data(data){}
//Copy ctor (do nothing)
string_base(const string_base&){}
~string_base(void) = default;
public:
//Stop managing stored pointer. Does not free.
char* release(void);
//Length of string not including null terminator
constexpr size_t length(void)const{return m_length;}
//direct access to managed pointer
constexpr char* get(void){return m_data;}
constexpr const char* get(void)const{return m_data;}
constexpr operator char*(void){return m_data;}
constexpr operator const char*(void)const{return m_data;}
//true if m_data is not null
constexpr operator bool(void)const{return m_data;}
char& operator[](size_t i);
const char& operator[](size_t i)const;
};
//Supplies all functions that string_base can't implement
template
class string_intermediary : public string_base
{
public:
using allocator_type = Allocator;
public:
string_intermediary(void) = default;
string_intermediary(char* data, size_t len):
string_base(data, len){}
string_intermediary(const char* data, size_t len):
string_base(reinterpret_cast(len ? Allocator::copy(data, len+1) : nullptr), len){}
string_intermediary(const char* data):
string_base(data ? strlen(data) : 0)
{
if(m_length)
m_data = reinterpret_cast(Allocator::copy(data, m_length+1));
}
string_intermediary(size_t len):
string_base(reinterpret_cast(len ? Allocator::allocate(len+1) : nullptr), len){}
//normal copy and move ctors
string_intermediary(const string_intermediary& b):
string_base(reinterpret_cast(b.m_length ? Allocator::copy(b.m_data, b.m_length+1) : nullptr), b.m_length){}
string_intermediary(string_intermediary&& s):
string_base(std::exchange(s.m_data, nullptr), s.m_length){}
string_intermediary(const string_base& b):
string_base(reinterpret_cast(b.length() ? Allocator::copy(b.get(), b.length()+1) : nullptr), b.length()){}
//copy from string expression
template::value && !detail::is_concrete_string::value,void>::type* = nullptr>
string_intermediary(T&& t){
size_t len = t.length();
if(!len){
return;
}
char* tmp = reinterpret_cast(Allocator::allocate(len+1));
_assign(tmp, t.get(), 0);
m_data = tmp;
m_data[len] = 0;
m_length = len;
}
//dtor
~string_intermediary(void){
Allocator::free(m_data);
}
string_intermediary& operator=(const string_intermediary& s){
string_intermediary tmp(s);
std::swap(m_data, tmp.m_data);
m_length = tmp.m_length;
return *this;
}
string_intermediary& operator=(string_intermediary&& s){
std::swap(m_data, s.m_data);
m_length = s.m_length;
return *this;
}
//Copy from c string
string_intermediary& operator=(const char* c){
return _copy_string(c, strlen(c));
}
//Copy from other string_base
string_intermediary& operator=(const string_base& s){
return _copy_string(s.get(), s.length());
}
//Move from other string base
template::value && !detail::is_concrete_string::value,void>::type* = nullptr>
string_base& operator=(T&& t){
size_t len = t.length();
char* tmp;
if(len > m_length){
tmp = reinterpret_cast(Allocator::allocate(len+1));
_assign(tmp, t.get(), 0);
Allocator::free(m_data);
}else{
tmp = m_data;
_assign(tmp, t.get(), 0);
}
m_data = tmp;
m_data[len] = 0;
m_length = len;
return *this;
}
string_intermediary operator+(const string_base& s)const{
string_intermediary tmp(reinterpret_cast(Allocator::allocate(m_length + s.length() + 1)), m_length+s.length());
memcpy(tmp.get(), m_data, m_length);
strcpy(tmp.get()+m_length, s.get());
return tmp;
}
string_intermediary operator+(const char* c)const{
size_t len = strlen(c);
string_intermediary tmp(reinterpret_cast(Allocator::allocate(m_length + len + 1)), m_length+len);
memcpy(tmp.get(), m_data, m_length);
strcpy(tmp.get()+m_length, c);
return tmp;
}
//Replace managed pointer. Frees existing value
void reset(char* val = nullptr){
Allocator::free(m_data);
m_data = val;
m_length = val ? strlen(val) : 0;
}
void reset(char* val, size_t len){
Allocator::free(m_data);
m_data = val;
m_length = len;
}
bool resize(size_t newsize){
if(newsize < m_length)
return false;
string_intermediary tmp(newsize);
memcpy(tmp.get(), m_data, m_length);
tmp[m_length] = 0;
*this = std::move(tmp);
return true;
}
void append(const char* data, size_t len){
string_intermediary tmp(m_length + len);
memcpy(tmp.m_data, m_data, m_length);
memcpy(tmp.m_data+m_length, data, len);
tmp[m_length+len] = 0;
*this = std::move(tmp);
}
void append(const char* data){
*this += data;
}
void append(const string_expr& s){
*this += s;
}
private:
string_intermediary& _copy_string(const char* s, size_t len){
if(!len){
Allocator::free(m_data);
m_length = 0;
return *this;
}
if(len <= m_length){
strcpy(m_data, s);
}else{
Allocator::free(m_data);
m_data = reinterpret_cast(Allocator::copy(s, len+1));
if(!m_data){
m_length = 0;
return *this;
}
}
m_length = len;
return *this;
}
template
static void _assign(char* dest, Tup&& t, size_t offset){
memcpy(dest+offset, std::get(t), std::get(t));
if constexpr(I+2 < std::tuple_size::value){
_assign(dest, std::forward(t), offset+std::get(t));
}
}
};
//check for member function 'length'
namespace detail{
template
struct has_len{
template
struct check;
template
static std::true_type test(check*);
template
static std::false_type test(...);
static constexpr bool value = std::is_same(0))>::value;
};
}
//Like an expression template but not really
template
class string_cat_expr : public string_expr
{
private:
Left m_l;
Right m_r;
public:
template
constexpr string_cat_expr(T&& l, U&& r):
m_l(std::forward(l)),
m_r(std::forward(r)){}
constexpr string_cat_expr(const string_cat_expr& s):
m_l(s.m_l),
m_r(s.m_r){}
constexpr string_cat_expr(string_cat_expr&& s):
m_l(s.m_l),
m_r(s.m_r){}
constexpr size_t length(void)const{
return _llen() + _rlen();
}
constexpr auto get(void){
return std::tuple_cat(_lget(), _rget());
}
private:
constexpr auto _lget(void){
if constexpr(detail::is_string::value){
if constexpr(detail::is_tuple::value){
//string_cat_expr
return m_l.get();
}else{
//string_base
return std::make_tuple(m_l.get(), m_l.length());
}
}else{
//c string
return std::make_tuple(m_l, strlen(m_l));
}
}
constexpr auto _rget(void){
if constexpr(detail::is_string::value){
if constexpr(detail::is_tuple::value){
return m_r.get();
}else{
return std::make_tuple(m_r.get(), m_r.length());
}
}else{
return std::make_tuple(m_r, strlen(m_r));
}
}
constexpr size_t _llen(void)const{
if constexpr(detail::has_len::type>::value){
return m_l.length();
}else{
return strlen(m_l);
}
}
constexpr size_t _rlen(void)const{
if constexpr(detail::has_len::type>::value){
return m_r.length();
}else{
return strlen(m_r);
}
}
};
}
template::value&&raii::detail::is_concrete_string::value,void>::type* = nullptr>
bool operator==(Str1&& left, Str2&& right){
return left && right && left.length() == right.length() && !strcmp(left.get(), right.get());
}
template::value&&raii::detail::is_concrete_string::value,void>::type* = nullptr>
bool operator!=(Str1&& left, Str2&& right){
return !(left == right);
}
template::value,void>::type* = nullptr>
constexpr auto operator+(const char* left, Right&& right){
return raii::string_cat_expr(right))>(left, std::forward(right));
}
template::value,void>::type* = nullptr>
constexpr auto operator+(Left&& left, const char* right){
return raii::string_cat_expr(left)),const char*>(std::forward(left), right);
}
template::value&&raii::detail::is_string::value,void>::type* = nullptr>
constexpr auto operator+(Left&& l, Right&& r){
return raii::string_cat_expr(l)),decltype(std::forward(r))>(std::forward(l), std::forward(r));
}
template::value&&raii::detail::is_string::value,void>::type* = nullptr>
decltype(auto) operator+=(Left& l, Right&& r){
return l = (l + std::forward(r));
}
template::value,void>::type* = nullptr>
decltype(auto) operator+=(Left& l, const char* r){
return l = (l + r);
}
#ifdef RAII_BINARY_HPP
#include "raii/binary_string_conv.hpp"
#endif
#endif