kitty/kitty/disk-cache.c
2021-01-03 06:22:48 +05:30

758 lines
23 KiB
C

/*
* disk-cache.c
* Copyright (C) 2020 Kovid Goyal <kovid at kovidgoyal.net>
*
* Distributed under terms of the GPL3 license.
*/
#define EXTRA_INIT if (PyModule_AddFunctions(module, module_methods) != 0) return false;
#define MAX_KEY_SIZE 256u
#if __linux__
#define HAS_SENDFILE
#endif
#include "disk-cache.h"
#include "uthash.h"
#include "loop-utils.h"
#include "threading.h"
#include "cross-platform-random.h"
#include <structmember.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#ifdef HAS_SENDFILE
#include <sys/sendfile.h>
#endif
typedef struct {
void *hash_key;
uint8_t *data;
size_t data_sz;
unsigned short hash_keylen;
bool written_to_disk;
off_t pos_in_cache_file;
uint8_t encryption_key[64];
UT_hash_handle hh;
} CacheEntry;
typedef struct {
PyObject_HEAD
char *cache_dir;
int cache_file_fd;
pthread_mutex_t lock;
pthread_t write_thread;
bool thread_started, lock_inited, loop_data_inited, shutting_down, fully_initialized;
LoopData loop_data;
CacheEntry *entries, currently_writing;
unsigned long long total_size;
} DiskCache;
static void
xor_data(const uint8_t* restrict key, const size_t key_sz, uint8_t* restrict data, const size_t data_sz) {
size_t unaligned_sz = data_sz % key_sz;
size_t aligned_sz = data_sz - unaligned_sz;
for (size_t offset = 0; offset < aligned_sz; offset += key_sz) {
for (size_t i = 0; i < key_sz; i++) data[offset + i] ^= key[i];
}
for (size_t i = 0; i < unaligned_sz; i++) data[aligned_sz + i] ^= key[i];
}
void
free_cache_entry(CacheEntry *e) {
if (e->hash_key) { free(e->hash_key); e->hash_key = NULL; }
if (e->data) { free(e->data); e->data = NULL; }
free(e);
}
#define mutex(op) pthread_mutex_##op(&self->lock)
static PyObject*
new(PyTypeObject *type, PyObject UNUSED *args, PyObject UNUSED *kwds) {
DiskCache *self;
self = (DiskCache*)type->tp_alloc(type, 0);
if (self) {
self->cache_file_fd = -1;
}
return (PyObject*) self;
}
static int
open_cache_file(const char *cache_path) {
size_t sz = strlen(cache_path) + 16;
char *buf = calloc(1, sz);
if (!buf) { errno = ENOMEM; return -1; }
snprintf(buf, sz - 1, "%s/XXXXXXXXXXXX", cache_path);
int fd = -1;
while (fd < 0) {
fd = mkostemp(buf, O_CLOEXEC);
if (fd > -1 || errno != EINTR) break;
}
if (fd > -1) unlink(buf);
free(buf);
return fd;
}
// Write loop {{{
static bool
copy_between_files(int infd, int outfd, off_t in_pos, size_t len, uint8_t *buf, size_t bufsz) {
#ifdef HAS_SENDFILE
(void)buf; (void)bufsz;
while (len) {
off_t r = in_pos;
ssize_t n = sendfile(outfd, infd, &r, len);
if (n < 0) {
if (errno != EAGAIN) return false;
continue;
}
in_pos += n; len -= n;
}
#else
while (len) {
ssize_t amt_read = pread(infd, buf, MIN(len, bufsz), in_pos);
if (amt_read < 0) {
if (errno == EINTR || errno == EAGAIN) continue;
return false;
}
if (amt_read == 0) {
errno = EIO;
return false;
}
len -= amt_read;
in_pos += amt_read;
uint8_t *p = buf;
while(amt_read) {
ssize_t amt_written = write(outfd, p, amt_read);
if (amt_written < 0) {
if (errno == EINTR || errno == EAGAIN) continue;
return false;
}
if (amt_written == 0) {
errno = EIO;
return false;
}
amt_read -= amt_written;
p += amt_written;
}
}
#endif
return true;
}
static inline off_t
size_of_cache_file(DiskCache *self) {
return lseek(self->cache_file_fd, 0, SEEK_END);
}
size_t
disk_cache_size_on_disk(PyObject *self) {
off_t ans = size_of_cache_file((DiskCache*)self);
return MAX(0, ans);
}
typedef struct {
uint8_t hash_key[MAX_KEY_SIZE];
unsigned short hash_keylen;
off_t old_offset, new_offset;
size_t data_sz;
} DefragEntry;
static void
defrag(DiskCache *self) {
int new_cache_file = -1;
DefragEntry *defrag_entries = NULL;
uint8_t *buf = NULL;
const size_t bufsz = 1024 * 1024;
bool lock_released = false, ok = false;
off_t size_on_disk = size_of_cache_file(self);
if (size_on_disk <= 0) goto cleanup;
size_t num_entries = HASH_COUNT(self->entries);
if (!num_entries) goto cleanup;
new_cache_file = open_cache_file(self->cache_dir);
if (new_cache_file < 0) {
perror("Failed to open second file for defrag of disk cache");
goto cleanup;
}
defrag_entries = calloc(num_entries, sizeof(DefragEntry));
if (!defrag_entries) goto cleanup;
size_t total_data_size = 0, num_entries_to_defrag = 0;
CacheEntry *tmp, *s;
HASH_ITER(hh, self->entries, s, tmp) {
if (s->pos_in_cache_file > -1 && s->data_sz) {
total_data_size += s->data_sz;
DefragEntry *e = defrag_entries + num_entries_to_defrag++;
e->hash_keylen = s->hash_keylen;
e->old_offset = s->pos_in_cache_file;
e->data_sz = s->data_sz;
if (s->hash_key) memcpy(e->hash_key, s->hash_key, s->hash_keylen);
num_entries_to_defrag++;
}
}
if (ftruncate(new_cache_file, total_data_size) != 0) {
perror("Failed to allocate space for new disk cache file during defrag");
goto cleanup;
}
lseek(new_cache_file, 0, SEEK_SET);
#ifndef HAS_SENDFILE
buf = malloc(bufsz);
if (!buf) goto cleanup;
#endif
mutex(unlock); lock_released = true;
off_t current_pos = 0;
for (size_t i = 0; i < num_entries_to_defrag; i++) {
DefragEntry *e = defrag_entries + i;
if (!copy_between_files(self->cache_file_fd, new_cache_file, e->old_offset, e->data_sz, buf, bufsz)) {
perror("Failed to copy data to new disk cache file during defrag");
goto cleanup;
}
e->new_offset = current_pos;
current_pos += e->data_sz;
}
ok = true;
cleanup:
if (lock_released) mutex(lock);
if (ok) {
safe_close(self->cache_file_fd, __FILE__, __LINE__);
self->cache_file_fd = new_cache_file; new_cache_file = -1;
for (size_t i = 0; i < num_entries_to_defrag; i++) {
DefragEntry *e = defrag_entries + i;
s = NULL;
HASH_FIND(hh, self->entries, e->hash_key, e->hash_keylen, s);
if (s) s->pos_in_cache_file = e->new_offset;
}
}
if (defrag_entries) free(defrag_entries);
if (buf) free(buf);
if (new_cache_file > -1) safe_close(new_cache_file, __FILE__, __LINE__);
}
static int
cmp_pos_in_cache_file(void *a_, void *b_) {
CacheEntry *a = a_, *b = b_;
return a->pos_in_cache_file - b->pos_in_cache_file;
}
static inline void
find_hole(DiskCache *self) {
off_t required_size = self->currently_writing.data_sz, prev = -100;
HASH_SORT(self->entries, cmp_pos_in_cache_file);
CacheEntry *s, *tmp;
HASH_ITER(hh, self->entries, s, tmp) {
if (s->pos_in_cache_file >= 0 && s->data_sz > 0) {
if (prev >= 0 && s->pos_in_cache_file - prev >= required_size) {
self->currently_writing.pos_in_cache_file = prev;
return;
}
prev = s->pos_in_cache_file + s->data_sz;
}
}
}
static inline bool
find_cache_entry_to_write(DiskCache *self) {
CacheEntry *tmp, *s;
off_t size_on_disk = size_of_cache_file(self);
if (self->total_size && size_on_disk > 0 && (size_t)size_on_disk > self->total_size * 2) defrag(self);
HASH_ITER(hh, self->entries, s, tmp) {
if (!s->written_to_disk) {
if (s->data) {
if (self->currently_writing.data) free(self->currently_writing.data);
self->currently_writing.data = s->data;
s->data = NULL;
self->currently_writing.data_sz = s->data_sz;
self->currently_writing.pos_in_cache_file = -1;
xor_data(s->encryption_key, sizeof(s->encryption_key), self->currently_writing.data, s->data_sz);
self->currently_writing.hash_keylen = MIN(s->hash_keylen, MAX_KEY_SIZE);
memcpy(self->currently_writing.hash_key, s->hash_key, self->currently_writing.hash_keylen);
find_hole(self);
return true;
}
s->written_to_disk = true;
s->pos_in_cache_file = 0;
s->data_sz = 0;
}
}
return false;
}
static inline bool
write_dirty_entry(DiskCache *self) {
size_t left = self->currently_writing.data_sz;
uint8_t *p = self->currently_writing.data;
if (self->currently_writing.pos_in_cache_file < 0) {
self->currently_writing.pos_in_cache_file = size_of_cache_file(self);
if (self->currently_writing.pos_in_cache_file < 0) {
perror("Failed to seek in disk cache file");
return false;
}
}
off_t offset = self->currently_writing.pos_in_cache_file;
while (left > 0) {
ssize_t n = pwrite(self->cache_file_fd, p, left, offset);
if (n < 0) {
if (errno == EINTR || errno == EAGAIN) continue;
perror("Failed to write to disk-cache file");
self->currently_writing.pos_in_cache_file = -1;
return false;
}
if (n == 0) {
fprintf(stderr, "Failed to write to disk-cache file with zero return\n");
self->currently_writing.pos_in_cache_file = -1;
return false;
}
left -= n;
p += n;
offset += n;
}
return true;
}
static inline void
retire_currently_writing(DiskCache *self) {
CacheEntry *s = NULL;
HASH_FIND(hh, self->entries, self->currently_writing.hash_key, self->currently_writing.hash_keylen, s);
if (s) {
s->written_to_disk = true;
s->pos_in_cache_file = self->currently_writing.pos_in_cache_file;
}
free(self->currently_writing.data);
self->currently_writing.data = NULL;
self->currently_writing.data_sz = 0;
}
static void*
write_loop(void *data) {
DiskCache *self = (DiskCache*)data;
set_thread_name("DiskCacheWrite");
struct pollfd fds[1] = {0};
fds[0].fd = self->loop_data.wakeup_read_fd;
fds[0].events = POLLIN;
bool found_dirty_entry = false;
while (!self->shutting_down) {
mutex(lock);
found_dirty_entry = find_cache_entry_to_write(self);
size_t count = HASH_COUNT(self->entries);
mutex(unlock);
if (found_dirty_entry) {
write_dirty_entry(self);
mutex(lock);
retire_currently_writing(self);
mutex(unlock);
continue;
} else if (!count) {
mutex(lock);
if (ftruncate(self->cache_file_fd, 0) == 0) lseek(self->cache_file_fd, 0, SEEK_END);
mutex(unlock);
}
if (poll(fds, 1, -1) > 0 && fds[0].revents & POLLIN) {
drain_fd(fds[0].fd); // wakeup
}
}
return 0;
}
// }}}
static bool
ensure_state(DiskCache *self) {
int ret;
if (self->fully_initialized) return true;
if (!self->loop_data_inited) {
if (!init_loop_data(&self->loop_data)) { PyErr_SetFromErrno(PyExc_OSError); return false; }
self->loop_data_inited = true;
}
if (!self->currently_writing.hash_key) {
self->currently_writing.hash_key = malloc(MAX_KEY_SIZE);
if (!self->currently_writing.hash_key) { PyErr_NoMemory(); return false; }
}
if (!self->lock_inited) {
if ((ret = pthread_mutex_init(&self->lock, NULL)) != 0) {
PyErr_Format(PyExc_OSError, "Failed to create disk cache lock mutex: %s", strerror(ret));
return false;
}
self->lock_inited = true;
}
if (!self->thread_started) {
if ((ret = pthread_create(&self->write_thread, NULL, write_loop, self)) != 0) {
PyErr_Format(PyExc_OSError, "Failed to start disk cache write thread with error: %s", strerror(ret));
return false;
}
self->thread_started = true;
}
if (!self->cache_dir) {
PyObject *kc = NULL, *cache_dir = NULL;
kc = PyImport_ImportModule("kitty.constants");
if (kc) {
cache_dir = PyObject_CallMethod(kc, "cache_dir", NULL);
if (cache_dir) {
self->cache_dir = strdup(PyUnicode_AsUTF8(cache_dir));
if (!self->cache_dir) PyErr_NoMemory();
}
}
Py_CLEAR(kc); Py_CLEAR(cache_dir);
if (PyErr_Occurred()) return false;
}
if (self->cache_file_fd < 0) {
self->cache_file_fd = open_cache_file(self->cache_dir);
if (self->cache_file_fd < 0) {
PyErr_SetFromErrnoWithFilename(PyExc_OSError, self->cache_dir);
return false;
}
}
self->fully_initialized = true;
return true;
}
static void
wakeup_write_loop(DiskCache *self) {
if (self->thread_started) wakeup_loop(&self->loop_data, false, "disk_cache_write_loop");
}
static void
dealloc(DiskCache* self) {
self->shutting_down = true;
if (self->thread_started) {
wakeup_write_loop(self);
pthread_join(self->write_thread, NULL);
self->thread_started = false;
}
if (self->currently_writing.hash_key) {
free(self->currently_writing.hash_key); self->currently_writing.hash_key = NULL;
}
if (self->lock_inited) {
pthread_mutex_destroy(&self->lock);
self->lock_inited = false;
}
if (self->loop_data_inited) {
free_loop_data(&self->loop_data);
self->loop_data_inited = false;
}
if (self->entries) {
CacheEntry *tmp, *s;
HASH_ITER(hh, self->entries, s, tmp) {
HASH_DEL(self->entries, s);
free_cache_entry(s); s = NULL;
}
self->entries = NULL;
}
if (self->cache_file_fd > -1) {
safe_close(self->cache_file_fd, __FILE__, __LINE__);
self->cache_file_fd = -1;
}
if (self->currently_writing.data) free(self->currently_writing.data);
Py_TYPE(self)->tp_free((PyObject*)self);
}
static inline CacheEntry*
create_cache_entry(const void *key, const size_t key_sz) {
CacheEntry *s = calloc(1, sizeof(CacheEntry));
if (!s) return (CacheEntry*)PyErr_NoMemory();
if (!secure_random_bytes(s->encryption_key, sizeof(s->encryption_key))) { free(s); PyErr_SetFromErrno(PyExc_OSError); return NULL; }
s->hash_key = malloc(key_sz);
if (!s->hash_key) { free(s); PyErr_NoMemory(); return NULL; }
s->hash_keylen = key_sz;
memcpy(s->hash_key, key, key_sz);
s->pos_in_cache_file = -2;
return s;
}
bool
add_to_disk_cache(PyObject *self_, const void *key, size_t key_sz, const void *data, size_t data_sz) {
DiskCache *self = (DiskCache*)self_;
if (!ensure_state(self)) return false;
if (key_sz > MAX_KEY_SIZE) { PyErr_SetString(PyExc_KeyError, "cache key is too long"); return false; }
CacheEntry *s = NULL;
uint8_t *copied_data = malloc(data_sz);
if (!copied_data) { PyErr_NoMemory(); return false; }
memcpy(copied_data, data, data_sz);
mutex(lock);
HASH_FIND(hh, self->entries, key, key_sz, s);
if (s == NULL) {
if (!(s = create_cache_entry(key, key_sz))) goto end;
HASH_ADD_KEYPTR(hh, self->entries, s->hash_key, s->hash_keylen, s);
} else {
s->written_to_disk = false;
if (s->data) free(s->data);
if (data_sz <= self->total_size) self->total_size -= data_sz;
else self->total_size = 0;
}
s->data = copied_data; s->data_sz = data_sz; copied_data = NULL;
self->total_size += s->data_sz;
end:
mutex(unlock);
if (copied_data) free(copied_data);
if (PyErr_Occurred()) return false;
wakeup_write_loop(self);
return true;
}
bool
remove_from_disk_cache(PyObject *self_, const void *key, size_t key_sz) {
DiskCache *self = (DiskCache*)self_;
if (!ensure_state(self)) return false;
if (key_sz > MAX_KEY_SIZE) { PyErr_SetString(PyExc_KeyError, "cache key is too long"); return false; }
CacheEntry *s = NULL;
bool removed = false;
mutex(lock);
HASH_FIND(hh, self->entries, key, key_sz, s);
if (s) {
removed = true;
HASH_DEL(self->entries, s);
self->total_size = (self->total_size > s->data_sz) ? self->total_size - s->data_sz : 0;
free_cache_entry(s);
}
mutex(unlock);
wakeup_write_loop(self);
return removed;
}
void
clear_disk_cache(PyObject *self_) {
DiskCache *self = (DiskCache*)self_;
CacheEntry *s, *tmp;
mutex(lock);
HASH_ITER(hh, self->entries, s, tmp) {
HASH_DEL(self->entries, s);
free_cache_entry(s);
}
mutex(unlock);
wakeup_write_loop(self);
}
static void
read_from_cache_file(const DiskCache *self, off_t pos, size_t sz, void *dest) {
uint8_t *p = dest;
while (sz) {
ssize_t n = pread(self->cache_file_fd, p, sz, pos);
if (n > 0) {
sz -= n;
p += n;
pos += n;
continue;
}
if (n < 0) {
if (errno == EINTR || errno == EAGAIN) continue;
PyErr_SetFromErrnoWithFilename(PyExc_OSError, self->cache_dir);
break;
}
if (n == 0) {
PyErr_SetString(PyExc_OSError, "Disk cache file truncated");
break;
}
}
}
static void
read_from_cache_entry(const DiskCache *self, const CacheEntry *s, void *dest) {
size_t sz = s->data_sz;
off_t pos = s->pos_in_cache_file;
if (pos < 0) {
PyErr_SetString(PyExc_OSError, "Cache entry was not written, could not read from it");
return;
}
read_from_cache_file(self, pos, sz, dest);
}
void*
read_from_disk_cache(PyObject *self_, const void *key, size_t key_sz, void*(allocator)(void*, size_t), void* allocator_data) {
DiskCache *self = (DiskCache*)self_;
void *data = NULL;
if (!ensure_state(self)) return data;
if (key_sz > MAX_KEY_SIZE) { PyErr_SetString(PyExc_KeyError, "cache key is too long"); return data; }
mutex(lock);
CacheEntry *s = NULL;
HASH_FIND(hh, self->entries, key, key_sz, s);
if (!s) { PyErr_SetString(PyExc_KeyError, "No cached entry with specified key found"); goto end; }
data = allocator(allocator_data, s->data_sz);
if (!data) { PyErr_NoMemory(); goto end; }
if (s->data) { memcpy(data, s->data, s->data_sz); }
else if (self->currently_writing.data && self->currently_writing.hash_key && self->currently_writing.hash_keylen == key_sz && memcmp(self->currently_writing.hash_key, key, key_sz) == 0) {
memcpy(data, self->currently_writing.data, s->data_sz);
xor_data(s->encryption_key, sizeof(s->encryption_key), data, s->data_sz);
}
else {
read_from_cache_entry(self, s, data);
xor_data(s->encryption_key, sizeof(s->encryption_key), data, s->data_sz);
}
end:
mutex(unlock);
return data;
}
bool
disk_cache_wait_for_write(PyObject *self_, monotonic_t timeout) {
DiskCache *self = (DiskCache*)self_;
monotonic_t end_at = monotonic() + timeout;
while (!timeout || monotonic() <= end_at) {
bool pending = false;
mutex(lock);
CacheEntry *s, *tmp;
HASH_ITER(hh, self->entries, s, tmp) {
if (!s->written_to_disk) {
pending = true;
break;
}
}
mutex(unlock);
if (!pending) return true;
wakeup_write_loop(self);
usleep(10 * 1000);
}
return false;
}
#define PYWRAP(name) static PyObject* py##name(DiskCache *self, PyObject *args)
#define PA(fmt, ...) if (!PyArg_ParseTuple(args, fmt, __VA_ARGS__)) return NULL;
PYWRAP(ensure_state) {
(void)args;
ensure_state(self);
Py_RETURN_NONE;
}
PYWRAP(xor_data) {
(void) self;
const char *key, *data;
Py_ssize_t keylen, data_sz;
PA("y#y#", &key, &keylen, &data, &data_sz);
PyObject *ans = PyBytes_FromStringAndSize(NULL, data_sz);
if (ans == NULL) return NULL;
void *dest = PyBytes_AS_STRING(ans);
memcpy(dest, data, data_sz);
xor_data((const uint8_t*)key, keylen, dest, data_sz);
return ans;
}
PYWRAP(read_from_cache_file) {
Py_ssize_t pos = 0, sz = -1;
PA("|nn", &pos, &sz);
if (sz < 0) sz = size_of_cache_file(self);
PyObject *ans = PyBytes_FromStringAndSize(NULL, sz);
if (ans) {
read_from_cache_file(self, pos, sz, PyBytes_AS_STRING(ans));
}
return ans;
}
static PyObject*
wait_for_write(PyObject *self, PyObject *args) {
double timeout = 0;
PA("|d", &timeout);
if (disk_cache_wait_for_write(self, s_double_to_monotonic_t(timeout))) Py_RETURN_TRUE;
Py_RETURN_FALSE;
}
static PyObject*
size_on_disk(PyObject *self, PyObject *args UNUSED) {
unsigned long long ans = disk_cache_size_on_disk(self);
return PyLong_FromUnsignedLongLong(ans);
}
static PyObject*
clear(PyObject *self, PyObject *args UNUSED) {
clear_disk_cache(self);
Py_RETURN_NONE;
}
static PyObject*
add(PyObject *self, PyObject *args) {
const char *key, *data;
Py_ssize_t keylen, datalen;
PA("y#y#", &key, &keylen, &data, &datalen);
if (!add_to_disk_cache(self, key, keylen, data, datalen)) return NULL;
Py_RETURN_NONE;
}
static PyObject*
pyremove(PyObject *self, PyObject *args) {
const char *key;
Py_ssize_t keylen;
PA("y#", &key, &keylen);
bool removed = remove_from_disk_cache(self, key, keylen);
if (PyErr_Occurred()) return NULL;
if (removed) Py_RETURN_TRUE;
Py_RETURN_FALSE;
}
typedef struct {
PyObject *bytes;
} BytesWrapper;
static void*
bytes_alloc(void *x, size_t sz) {
BytesWrapper *w = x;
w->bytes = PyBytes_FromStringAndSize(NULL, sz);
if (!w->bytes) return NULL;
return PyBytes_AS_STRING(w->bytes);
}
static PyObject*
get(PyObject *self, PyObject *args) {
const char *key;
Py_ssize_t keylen;
PA("y#", &key, &keylen);
BytesWrapper w = {0};
read_from_disk_cache(self, key, keylen, bytes_alloc, &w);
if (PyErr_Occurred()) { Py_CLEAR(w.bytes); return NULL; }
return w.bytes;
}
#define MW(name, arg_type) {#name, (PyCFunction)py##name, arg_type, NULL}
static PyMethodDef methods[] = {
MW(ensure_state, METH_NOARGS),
MW(read_from_cache_file, METH_VARARGS),
{"add", add, METH_VARARGS, NULL},
{"remove", pyremove, METH_VARARGS, NULL},
{"get", get, METH_VARARGS, NULL},
{"wait_for_write", wait_for_write, METH_VARARGS, NULL},
{"size_on_disk", size_on_disk, METH_NOARGS, NULL},
{"clear", clear, METH_NOARGS, NULL},
{NULL} /* Sentinel */
};
static PyMemberDef members[] = {
{"total_size", T_ULONGLONG, offsetof(DiskCache, total_size), READONLY, "total_size"},
{NULL},
};
PyTypeObject DiskCache_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "fast_data_types.DiskCache",
.tp_basicsize = sizeof(DiskCache),
.tp_dealloc = (destructor)dealloc,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = "A disk based secure cache",
.tp_methods = methods,
.tp_members = members,
.tp_new = new,
};
static PyMethodDef module_methods[] = {
MW(xor_data, METH_VARARGS),
{NULL, NULL, 0, NULL} /* Sentinel */
};
INIT_TYPE(DiskCache)
PyObject* create_disk_cache(void) { return new(&DiskCache_Type, NULL, NULL); }