kitty/kitty/child-monitor.c

1626 lines
60 KiB
C

/*
* child-monitor.c
* Copyright (C) 2017 Kovid Goyal <kovid at kovidgoyal.net>
*
* Distributed under terms of the GPL3 license.
*/
#include "loop-utils.h"
#include "safe-wrappers.h"
#include "state.h"
#include "threading.h"
#include "screen.h"
#include "fonts.h"
#include "charsets.h"
#include "monotonic.h"
#include <termios.h>
#include <unistd.h>
#include <float.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <signal.h>
extern PyTypeObject Screen_Type;
#ifdef DEBUG_EVENT_LOOP
#define EVDBG(...) log_event(__VA_ARGS__)
#else
#define EVDBG(...)
#endif
#define EXTRA_FDS 2
#ifndef MSG_NOSIGNAL
// Apple does not implement MSG_NOSIGNAL
#define MSG_NOSIGNAL 0
#endif
#define USE_RENDER_FRAMES (global_state.has_render_frames && OPT(sync_to_monitor))
static void (*parse_func)(Screen*, PyObject*, monotonic_t);
typedef struct {
char *data;
size_t sz;
id_type peer_id;
} Message;
typedef struct {
PyObject_HEAD
PyObject *dump_callback, *update_screen, *death_notify;
unsigned int count;
bool shutting_down;
pthread_t io_thread, talk_thread;
int talk_fd, listen_fd;
Message *messages;
size_t messages_capacity, messages_count;
LoopData io_loop_data;
} ChildMonitor;
typedef struct {
Screen *screen;
bool needs_removal;
int fd;
unsigned long id;
pid_t pid;
} Child;
static const Child EMPTY_CHILD = {0};
#define screen_mutex(op, which) \
pthread_mutex_##op(&screen->which##_buf_lock);
#define children_mutex(op) \
pthread_mutex_##op(&children_lock);
#define talk_mutex(op) \
pthread_mutex_##op(&talk_lock);
static Child children[MAX_CHILDREN] = {{0}};
static Child scratch[MAX_CHILDREN] = {{0}};
static Child add_queue[MAX_CHILDREN] = {{0}}, remove_queue[MAX_CHILDREN] = {{0}};
static unsigned long remove_notify[MAX_CHILDREN] = {0};
static size_t add_queue_count = 0, remove_queue_count = 0;
static struct pollfd fds[MAX_CHILDREN + EXTRA_FDS] = {{0}};
static pthread_mutex_t children_lock, talk_lock;
static bool kill_signal_received = false;
static ChildMonitor *the_monitor = NULL;
typedef struct {
pid_t pid;
int status;
} ReapedPID;
static pid_t monitored_pids[256] = {0};
static size_t monitored_pids_count = 0;
static ReapedPID reaped_pids[arraysz(monitored_pids)] = {{0}};
static size_t reaped_pids_count = 0;
// Main thread functions {{{
#define FREE_CHILD(x) \
Py_CLEAR((x).screen); x = EMPTY_CHILD;
#define XREF_CHILD(x, OP) OP(x.screen);
#define INCREF_CHILD(x) XREF_CHILD(x, Py_INCREF)
#define DECREF_CHILD(x) XREF_CHILD(x, Py_DECREF)
// The max time to wait for events from the window system
// before ticking over the main loop. Negative values mean wait forever.
static monotonic_t maximum_wait = -1;
static inline void
set_maximum_wait(monotonic_t val) {
if (val >= 0 && (val < maximum_wait || maximum_wait < 0)) maximum_wait = val;
}
static PyObject *
new(PyTypeObject *type, PyObject *args, PyObject UNUSED *kwds) {
ChildMonitor *self;
PyObject *dump_callback, *death_notify;
int talk_fd = -1, listen_fd = -1;
int ret;
if (the_monitor) { PyErr_SetString(PyExc_RuntimeError, "Can have only a single ChildMonitor instance"); return NULL; }
if (!PyArg_ParseTuple(args, "OO|ii", &death_notify, &dump_callback, &talk_fd, &listen_fd)) return NULL;
if ((ret = pthread_mutex_init(&children_lock, NULL)) != 0) {
PyErr_Format(PyExc_RuntimeError, "Failed to create children_lock mutex: %s", strerror(ret));
return NULL;
}
if ((ret = pthread_mutex_init(&talk_lock, NULL)) != 0) {
PyErr_Format(PyExc_RuntimeError, "Failed to create talk_lock mutex: %s", strerror(ret));
return NULL;
}
self = (ChildMonitor *)type->tp_alloc(type, 0);
if (!init_loop_data(&self->io_loop_data)) return PyErr_SetFromErrno(PyExc_OSError);
if (!install_signal_handlers(&self->io_loop_data)) return PyErr_SetFromErrno(PyExc_OSError);
self->talk_fd = talk_fd;
self->listen_fd = listen_fd;
if (self == NULL) return PyErr_NoMemory();
self->death_notify = death_notify; Py_INCREF(death_notify);
if (dump_callback != Py_None) {
self->dump_callback = dump_callback; Py_INCREF(dump_callback);
parse_func = parse_worker_dump;
} else parse_func = parse_worker;
self->count = 0;
fds[0].fd = self->io_loop_data.wakeup_read_fd; fds[1].fd = self->io_loop_data.signal_read_fd;
fds[0].events = POLLIN; fds[1].events = POLLIN;
the_monitor = self;
return (PyObject*) self;
}
static void
dealloc(ChildMonitor* self) {
if (self->messages) {
for (size_t i = 0; i < self->messages_count; i++) free(self->messages[i].data);
free(self->messages); self->messages = NULL;
self->messages_count = 0; self->messages_capacity = 0;
}
pthread_mutex_destroy(&children_lock);
pthread_mutex_destroy(&talk_lock);
Py_CLEAR(self->dump_callback);
Py_CLEAR(self->death_notify);
Py_TYPE(self)->tp_free((PyObject*)self);
while (remove_queue_count) {
remove_queue_count--;
FREE_CHILD(remove_queue[remove_queue_count]);
}
while (add_queue_count) {
add_queue_count--;
FREE_CHILD(add_queue[add_queue_count]);
}
free_loop_data(&self->io_loop_data);
}
static void
wakeup_io_loop(ChildMonitor *self, bool in_signal_handler) {
wakeup_loop(&self->io_loop_data, in_signal_handler, "io_loop");
}
static void* io_loop(void *data);
static void* talk_loop(void *data);
static void send_response(id_type peer_id, const char *msg, size_t msg_sz);
static void wakeup_talk_loop(bool);
static bool talk_thread_started = false;
static PyObject *
start(PyObject *s, PyObject *a UNUSED) {
#define start_doc "start() -> Start the I/O thread"
ChildMonitor *self = (ChildMonitor*)s;
int ret;
if (self->talk_fd > -1 || self->listen_fd > -1) {
if ((ret = pthread_create(&self->talk_thread, NULL, talk_loop, self)) != 0) {
return PyErr_Format(PyExc_OSError, "Failed to start talk thread with error: %s", strerror(ret));
}
talk_thread_started = true;
}
ret = pthread_create(&self->io_thread, NULL, io_loop, self);
if (ret != 0) return PyErr_Format(PyExc_OSError, "Failed to start I/O thread with error: %s", strerror(ret));
Py_RETURN_NONE;
}
static PyObject *
wakeup(ChildMonitor *self, PyObject *args UNUSED) {
#define wakeup_doc "wakeup() -> wakeup the ChildMonitor I/O thread, forcing it to exit from poll() if it is waiting there."
wakeup_io_loop(self, false);
Py_RETURN_NONE;
}
static PyObject *
add_child(ChildMonitor *self, PyObject *args) {
#define add_child_doc "add_child(id, pid, fd, screen) -> Add a child."
children_mutex(lock);
if (self->count + add_queue_count >= MAX_CHILDREN) { PyErr_SetString(PyExc_ValueError, "Too many children"); children_mutex(unlock); return NULL; }
add_queue[add_queue_count] = EMPTY_CHILD;
#define A(attr) &add_queue[add_queue_count].attr
if (!PyArg_ParseTuple(args, "kiiO", A(id), A(pid), A(fd), A(screen))) {
children_mutex(unlock);
return NULL;
}
#undef A
INCREF_CHILD(add_queue[add_queue_count]);
add_queue_count++;
children_mutex(unlock);
wakeup_io_loop(self, false);
Py_RETURN_NONE;
}
bool
schedule_write_to_child(unsigned long id, unsigned int num, ...) {
ChildMonitor *self = the_monitor;
bool found = false;
const char *data;
size_t sz = 0;
va_list ap;
va_start(ap, num);
for (unsigned int i = 0; i < num; i++) {
va_arg(ap, const char*);
sz += va_arg(ap, size_t);
}
va_end(ap);
children_mutex(lock);
for (size_t i = 0; i < self->count; i++) {
if (children[i].id == id) {
found = true;
Screen *screen = children[i].screen;
screen_mutex(lock, write);
size_t space_left = screen->write_buf_sz - screen->write_buf_used;
if (space_left < sz) {
if (screen->write_buf_used + sz > 100 * 1024 * 1024) {
log_error("Too much data being sent to child with id: %lu, ignoring it", id);
screen_mutex(unlock, write);
break;
}
screen->write_buf_sz = screen->write_buf_used + sz;
screen->write_buf = PyMem_RawRealloc(screen->write_buf, screen->write_buf_sz);
if (screen->write_buf == NULL) { fatal("Out of memory."); }
}
va_start(ap, num);
for (unsigned int i = 0; i < num; i++) {
data = va_arg(ap, const char*);
size_t dsz = va_arg(ap, size_t);
memcpy(screen->write_buf + screen->write_buf_used, data, dsz);
screen->write_buf_used += dsz;
}
va_end(ap);
if (screen->write_buf_sz > BUFSIZ && screen->write_buf_used < BUFSIZ) {
screen->write_buf_sz = BUFSIZ;
screen->write_buf = PyMem_RawRealloc(screen->write_buf, screen->write_buf_sz);
if (screen->write_buf == NULL) { fatal("Out of memory."); }
}
if (screen->write_buf_used) wakeup_io_loop(self, false);
screen_mutex(unlock, write);
break;
}
}
children_mutex(unlock);
return found;
}
static PyObject *
needs_write(ChildMonitor UNUSED *self, PyObject *args) {
#define needs_write_doc "needs_write(id, data) -> Queue data to be written to child."
unsigned long id, sz;
const char *data;
if (!PyArg_ParseTuple(args, "ks#", &id, &data, &sz)) return NULL;
if (schedule_write_to_child(id, 1, data, (size_t)sz)) { Py_RETURN_TRUE; }
Py_RETURN_FALSE;
}
static PyObject *
shutdown_monitor(ChildMonitor *self, PyObject *a UNUSED) {
#define shutdown_monitor_doc "shutdown_monitor() -> Shutdown the monitor loop."
self->shutting_down = true;
wakeup_talk_loop(false);
wakeup_io_loop(self, false);
int ret = pthread_join(self->io_thread, NULL);
if (ret != 0) return PyErr_Format(PyExc_OSError, "Failed to join() I/O thread with error: %s", strerror(ret));
if (talk_thread_started) {
ret = pthread_join(self->talk_thread, NULL);
if (ret != 0) return PyErr_Format(PyExc_OSError, "Failed to join() talk thread with error: %s", strerror(ret));
}
talk_thread_started = false;
Py_RETURN_NONE;
}
static inline bool
do_parse(ChildMonitor *self, Screen *screen, monotonic_t now) {
bool input_read = false;
screen_mutex(lock, read);
if (screen->read_buf_sz || screen->pending_mode.used) {
monotonic_t time_since_new_input = now - screen->new_input_at;
if (time_since_new_input >= OPT(input_delay)) {
bool read_buf_full = screen->read_buf_sz >= READ_BUF_SZ;
input_read = true;
parse_func(screen, self->dump_callback, now);
if (read_buf_full) wakeup_io_loop(self, false); // Ensure the read fd has POLLIN set
screen->new_input_at = 0;
if (screen->pending_mode.activated_at) {
monotonic_t time_since_pending = MAX(0, now - screen->pending_mode.activated_at);
set_maximum_wait(screen->pending_mode.wait_time - time_since_pending);
}
} else set_maximum_wait(OPT(input_delay) - time_since_new_input);
}
screen_mutex(unlock, read);
return input_read;
}
static bool
parse_input(ChildMonitor *self) {
// Parse all available input that was read in the I/O thread.
size_t count = 0, remove_count = 0;
bool input_read = false;
monotonic_t now = monotonic();
children_mutex(lock);
while (remove_queue_count) {
remove_queue_count--;
remove_notify[remove_count] = remove_queue[remove_queue_count].id;
remove_count++;
FREE_CHILD(remove_queue[remove_queue_count]);
}
if (UNLIKELY(kill_signal_received)) {
global_state.quit_request = IMPERATIVE_CLOSE_REQUESTED;
global_state.has_pending_closes = true;
request_tick_callback();
kill_signal_received = false;
} else {
count = self->count;
for (size_t i = 0; i < count; i++) {
scratch[i] = children[i];
INCREF_CHILD(scratch[i]);
}
}
children_mutex(unlock);
Message *msgs = NULL;
size_t msgs_count = 0;
talk_mutex(lock);
if (UNLIKELY(self->messages_count)) {
msgs = malloc(sizeof(Message) * self->messages_count);
if (msgs) {
memcpy(msgs, self->messages, sizeof(Message) * self->messages_count);
msgs_count = self->messages_count;
}
memset(self->messages, 0, sizeof(Message) * self->messages_capacity);
self->messages_count = 0;
}
talk_mutex(unlock);
if (msgs_count) {
for (size_t i = 0; i < msgs_count; i++) {
Message *msg = msgs + i;
PyObject *resp = NULL;
if (msg->data) {
resp = PyObject_CallMethod(global_state.boss, "peer_message_received", "y#", msg->data, (int)msg->sz);
free(msg->data);
if (!resp) PyErr_Print();
}
if (resp && PyBytes_Check(resp)) send_response(msg->peer_id, PyBytes_AS_STRING(resp), PyBytes_GET_SIZE(resp));
else send_response(msg->peer_id, NULL, 0);
Py_CLEAR(resp);
}
free(msgs); msgs = NULL;
}
while(remove_count) {
// must be done while no locks are held, since the locks are non-recursive and
// the python function could call into other functions in this module
remove_count--;
PyObject *t = PyObject_CallFunction(self->death_notify, "k", remove_notify[remove_count]);
if (t == NULL) PyErr_Print();
else Py_DECREF(t);
}
for (size_t i = 0; i < count; i++) {
if (!scratch[i].needs_removal) {
if (do_parse(self, scratch[i].screen, now)) input_read = true;
}
DECREF_CHILD(scratch[i]);
}
return input_read;
}
static inline void
mark_child_for_close(ChildMonitor *self, id_type window_id) {
children_mutex(lock);
for (size_t i = 0; i < self->count; i++) {
if (children[i].id == window_id) {
children[i].needs_removal = true;
break;
}
}
children_mutex(unlock);
wakeup_io_loop(self, false);
}
static PyObject *
mark_for_close(ChildMonitor *self, PyObject *args) {
#define mark_for_close_doc "Mark a child to be removed from the child monitor"
id_type window_id;
if (!PyArg_ParseTuple(args, "K", &window_id)) return NULL;
mark_child_for_close(self, window_id);
Py_RETURN_NONE;
}
static inline bool
pty_resize(int fd, struct winsize *dim) {
while(true) {
if (ioctl(fd, TIOCSWINSZ, dim) == -1) {
if (errno == EINTR) continue;
if (errno != EBADF && errno != ENOTTY) {
log_error("Failed to resize tty associated with fd: %d with error: %s", fd, strerror(errno));
return false;
}
}
break;
}
return true;
}
static PyObject *
resize_pty(ChildMonitor *self, PyObject *args) {
#define resize_pty_doc "Resize the pty associated with the specified child"
unsigned long window_id;
struct winsize dim;
int fd = -1;
if (!PyArg_ParseTuple(args, "kHHHH", &window_id, &dim.ws_row, &dim.ws_col, &dim.ws_xpixel, &dim.ws_ypixel)) return NULL;
children_mutex(lock);
#define FIND(queue, count) { \
for (size_t i = 0; i < count; i++) { \
if (queue[i].id == window_id) { \
fd = queue[i].fd; \
break; \
} \
}}
FIND(children, self->count);
if (fd == -1) FIND(add_queue, add_queue_count);
if (fd != -1) {
if (!pty_resize(fd, &dim)) PyErr_SetFromErrno(PyExc_OSError);
} else log_error("Failed to send resize signal to child with id: %lu (children count: %u) (add queue: %zu)", window_id, self->count, add_queue_count);
children_mutex(unlock);
if (PyErr_Occurred()) return NULL;
Py_RETURN_NONE;
}
bool
set_iutf8(int UNUSED fd, bool UNUSED on) {
#ifdef IUTF8
struct termios attrs;
if (tcgetattr(fd, &attrs) != 0) return false;
if (on) attrs.c_iflag |= IUTF8;
else attrs.c_iflag &= ~IUTF8;
if (tcsetattr(fd, TCSANOW, &attrs) != 0) return false;
#endif
return true;
}
static PyObject*
pyset_iutf8(ChildMonitor *self, PyObject *args) {
id_type window_id;
int on;
PyObject *found = Py_False;
if (!PyArg_ParseTuple(args, "Kp", &window_id, &on)) return NULL;
children_mutex(lock);
for (size_t i = 0; i < self->count; i++) {
if (children[i].id == window_id) {
found = Py_True;
if (!set_iutf8(fds[EXTRA_FDS + i].fd, on & 1)) PyErr_SetFromErrno(PyExc_OSError);
break;
}
}
children_mutex(unlock);
if (PyErr_Occurred()) return NULL;
Py_INCREF(found);
return found;
}
#undef FREE_CHILD
#undef INCREF_CHILD
#undef DECREF_CHILD
extern void cocoa_update_menu_bar_title(PyObject*);
static inline void
collect_cursor_info(CursorRenderInfo *ans, Window *w, monotonic_t now, OSWindow *os_window) {
ScreenRenderData *rd = &w->render_data;
Cursor *cursor = rd->screen->cursor;
ans->x = cursor->x; ans->y = cursor->y;
ans->is_visible = false;
if (rd->screen->scrolled_by || !screen_is_cursor_visible(rd->screen)) return;
monotonic_t time_since_start_blink = now - os_window->cursor_blink_zero_time;
bool cursor_blinking = OPT(cursor_blink_interval) > 0 && os_window->is_focused && (OPT(cursor_stop_blinking_after) == 0 || time_since_start_blink <= OPT(cursor_stop_blinking_after));
bool do_draw_cursor = true;
if (cursor_blinking) {
int t = monotonic_t_to_ms(time_since_start_blink);
int d = monotonic_t_to_ms(OPT(cursor_blink_interval));
int n = t / d;
do_draw_cursor = n % 2 == 0 ? true : false;
monotonic_t bucket = ms_to_monotonic_t((monotonic_t)(n + 1) * d);
monotonic_t delay = bucket - time_since_start_blink;
set_maximum_wait(delay);
}
if (!do_draw_cursor) { ans->is_visible = false; return; }
ans->is_visible = true;
ColorProfile *cp = rd->screen->color_profile;
ans->shape = cursor->shape ? cursor->shape : OPT(cursor_shape);
ans->color = colorprofile_to_color(cp, cp->overridden.cursor_color, cp->configured.cursor_color);
ans->is_focused = os_window->is_focused;
}
static inline void
change_menubar_title(PyObject *title UNUSED) {
#ifdef __APPLE__
static PyObject *current_title = NULL;
if (title != current_title) {
current_title = title;
if (title && OPT(macos_show_window_title_in) & MENUBAR) cocoa_update_menu_bar_title(title);
}
#endif
}
static inline bool
prepare_to_render_os_window(OSWindow *os_window, monotonic_t now, unsigned int *active_window_id, color_type *active_window_bg, unsigned int *num_visible_windows, bool *all_windows_have_same_bg, bool scan_for_animated_images) {
#define TD os_window->tab_bar_render_data
bool needs_render = os_window->needs_render;
os_window->needs_render = false;
if (TD.screen && os_window->num_tabs >= OPT(tab_bar_min_tabs)) {
if (!os_window->tab_bar_data_updated) {
call_boss(update_tab_bar_data, "K", os_window->id);
os_window->tab_bar_data_updated = true;
}
if (send_cell_data_to_gpu(TD.vao_idx, 0, TD.xstart, TD.ystart, TD.dx, TD.dy, TD.screen, os_window)) needs_render = true;
}
if (OPT(mouse_hide_wait) > 0 && !is_mouse_hidden(os_window)) {
if (now - os_window->last_mouse_activity_at >= OPT(mouse_hide_wait)) hide_mouse(os_window);
else set_maximum_wait(OPT(mouse_hide_wait) - now + os_window->last_mouse_activity_at);
}
Tab *tab = os_window->tabs + os_window->active_tab;
*active_window_bg = OPT(background);
*all_windows_have_same_bg = true;
*num_visible_windows = 0;
color_type first_window_bg = 0;
for (unsigned int i = 0; i < tab->num_windows; i++) {
Window *w = tab->windows + i;
#define WD w->render_data
if (w->visible && WD.screen) {
*num_visible_windows += 1;
color_type window_bg = colorprofile_to_color(WD.screen->color_profile, WD.screen->color_profile->overridden.default_bg, WD.screen->color_profile->configured.default_bg);
if (*num_visible_windows == 1) first_window_bg = window_bg;
if (first_window_bg != window_bg) *all_windows_have_same_bg = false;
if (w->last_drag_scroll_at > 0) {
if (now - w->last_drag_scroll_at >= ms_to_monotonic_t(20ll)) {
if (drag_scroll(w, os_window)) {
w->last_drag_scroll_at = now;
set_maximum_wait(ms_to_monotonic_t(20ll));
needs_render = true;
} else w->last_drag_scroll_at = 0;
} else set_maximum_wait(now - w->last_drag_scroll_at);
}
bool is_active_window = i == tab->active_window;
if (is_active_window) {
*active_window_id = w->id;
collect_cursor_info(&WD.screen->cursor_render_info, w, now, os_window);
if (w->cursor_visible_at_last_render != WD.screen->cursor_render_info.is_visible || w->last_cursor_x != WD.screen->cursor_render_info.x || w->last_cursor_y != WD.screen->cursor_render_info.y || w->last_cursor_shape != WD.screen->cursor_render_info.shape) needs_render = true;
set_os_window_title_from_window(w, os_window);
*active_window_bg = window_bg;
} else WD.screen->cursor_render_info.is_visible = false;
if (scan_for_animated_images) {
monotonic_t min_gap;
if (scan_active_animations(WD.screen->grman, now, &min_gap, true)) needs_render = true;
if (min_gap < MONOTONIC_T_MAX) {
global_state.check_for_active_animated_images = true;
set_maximum_wait(min_gap);
}
}
if (send_cell_data_to_gpu(WD.vao_idx, WD.gvao_idx, WD.xstart, WD.ystart, WD.dx, WD.dy, WD.screen, os_window)) needs_render = true;
if (WD.screen->start_visual_bell_at != 0) needs_render = true;
}
}
return needs_render;
}
static inline void
render_os_window(OSWindow *os_window, monotonic_t now, unsigned int active_window_id, color_type active_window_bg, unsigned int num_visible_windows, bool all_windows_have_same_bg) {
// ensure all pixels are cleared to background color at least once in every buffer
if (os_window->clear_count++ < 3) blank_os_window(os_window);
Tab *tab = os_window->tabs + os_window->active_tab;
BorderRects *br = &tab->border_rects;
bool static_live_resize_in_progress = os_window->live_resize.in_progress && OPT(resize_draw_strategy) == RESIZE_DRAW_STATIC;
float x_ratio = 1, y_ratio = 1;
if (static_live_resize_in_progress) {
x_ratio = (float) os_window->viewport_width / (float) os_window->live_resize.width;
y_ratio = (float) os_window->viewport_height / (float) os_window->live_resize.height;
}
if (!static_live_resize_in_progress) {
draw_borders(br->vao_idx, br->num_border_rects, br->rect_buf, br->is_dirty, os_window->viewport_width, os_window->viewport_height, active_window_bg, num_visible_windows, all_windows_have_same_bg, os_window);
br->is_dirty = false;
}
if (TD.screen && os_window->num_tabs >= OPT(tab_bar_min_tabs)) draw_cells(TD.vao_idx, 0, TD.xstart, TD.ystart, TD.dx * x_ratio, TD.dy * y_ratio, TD.screen, os_window, true, false);
for (unsigned int i = 0; i < tab->num_windows; i++) {
Window *w = tab->windows + i;
if (w->visible && WD.screen) {
bool is_active_window = i == tab->active_window;
draw_cells(WD.vao_idx, WD.gvao_idx, WD.xstart, WD.ystart, WD.dx * x_ratio, WD.dy * y_ratio, WD.screen, os_window, is_active_window, true);
if (WD.screen->start_visual_bell_at != 0) {
monotonic_t bell_left = OPT(visual_bell_duration) - (now - WD.screen->start_visual_bell_at);
set_maximum_wait(bell_left);
}
w->cursor_visible_at_last_render = WD.screen->cursor_render_info.is_visible; w->last_cursor_x = WD.screen->cursor_render_info.x; w->last_cursor_y = WD.screen->cursor_render_info.y; w->last_cursor_shape = WD.screen->cursor_render_info.shape;
}
}
swap_window_buffers(os_window);
os_window->last_active_tab = os_window->active_tab; os_window->last_num_tabs = os_window->num_tabs; os_window->last_active_window_id = active_window_id;
os_window->focused_at_last_render = os_window->is_focused;
os_window->is_damaged = false;
if (USE_RENDER_FRAMES) request_frame_render(os_window);
#undef WD
#undef TD
}
static void
draw_resizing_text(OSWindow *w) {
char text[32] = {0};
unsigned int width = w->live_resize.width, height = w->live_resize.height;
snprintf(text, sizeof(text), "%u x %u cells", width / w->fonts_data->cell_width, height / w->fonts_data->cell_height);
StringCanvas rendered = render_simple_text(w->fonts_data, text);
if (rendered.canvas) {
draw_centered_alpha_mask(w, width, height, rendered.width, rendered.height, rendered.canvas);
free(rendered.canvas);
}
}
static inline bool
no_render_frame_received_recently(OSWindow *w, monotonic_t now, monotonic_t max_wait) {
bool ans = now - w->last_render_frame_received_at > max_wait;
if (ans && global_state.debug_rendering) {
if (global_state.is_wayland) {
log_error("No render frame received in %.2f seconds", monotonic_t_to_s_double(max_wait));
} else {
log_error("No render frame received in %.2f seconds, re-requesting at: %f", monotonic_t_to_s_double(max_wait), monotonic_t_to_s_double(now));
}
}
return ans;
}
static inline void
render(monotonic_t now, bool input_read) {
EVDBG("input_read: %d, check_for_active_animated_images: %d", input_read, global_state.check_for_active_animated_images);
static monotonic_t last_render_at = MONOTONIC_T_MIN;
monotonic_t time_since_last_render = last_render_at == MONOTONIC_T_MIN ? OPT(repaint_delay) : now - last_render_at;
if (!input_read && time_since_last_render < OPT(repaint_delay)) {
set_maximum_wait(OPT(repaint_delay) - time_since_last_render);
return;
}
const bool scan_for_animated_images = global_state.check_for_active_animated_images;
global_state.check_for_active_animated_images = false;
for (size_t i = 0; i < global_state.num_os_windows; i++) {
OSWindow *w = global_state.os_windows + i;
w->render_calls++;
if (!w->num_tabs) continue;
if (!should_os_window_be_rendered(w)) {
update_os_window_title(w);
if (w->is_focused) change_menubar_title(w->window_title);
continue;
}
if (USE_RENDER_FRAMES && w->render_state != RENDER_FRAME_READY) {
if (w->render_state == RENDER_FRAME_NOT_REQUESTED || no_render_frame_received_recently(w, now, ms_to_monotonic_t(250ll))) request_frame_render(w);
continue;
}
make_os_window_context_current(w);
if (w->live_resize.in_progress && OPT(resize_draw_strategy) >= RESIZE_DRAW_BLANK) {
blank_os_window(w);
if (OPT(resize_draw_strategy) == RESIZE_DRAW_SIZE) draw_resizing_text(w);
swap_window_buffers(w);
if (USE_RENDER_FRAMES) request_frame_render(w);
continue;
}
if (w->live_resize.in_progress && OPT(resize_draw_strategy) == RESIZE_DRAW_STATIC) blank_os_window(w);
bool needs_render = w->is_damaged || w->live_resize.in_progress;
if (w->viewport_size_dirty) {
w->clear_count = 0;
update_surface_size(w->viewport_width, w->viewport_height, w->offscreen_texture_id);
w->viewport_size_dirty = false;
needs_render = true;
}
unsigned int active_window_id = 0, num_visible_windows = 0;
bool all_windows_have_same_bg;
color_type active_window_bg = 0;
if (!w->fonts_data) { log_error("No fonts data found for window id: %llu", w->id); continue; }
if (prepare_to_render_os_window(w, now, &active_window_id, &active_window_bg, &num_visible_windows, &all_windows_have_same_bg, scan_for_animated_images)) needs_render = true;
if (w->last_active_window_id != active_window_id || w->last_active_tab != w->active_tab || w->focused_at_last_render != w->is_focused) needs_render = true;
if (w->render_calls < 3 && w->bgimage && w->bgimage->texture_id) needs_render = true;
if (needs_render) render_os_window(w, now, active_window_id, active_window_bg, num_visible_windows, all_windows_have_same_bg);
if (w->is_focused) change_menubar_title(w->window_title);
}
last_render_at = now;
#undef TD
}
typedef struct { int fd; uint8_t *buf; size_t sz; } ThreadWriteData;
static inline ThreadWriteData*
alloc_twd(size_t sz) {
ThreadWriteData *data = calloc(1, sizeof(ThreadWriteData));
if (data != NULL) {
data->sz = sz;
data->buf = malloc(sz);
if (data->buf == NULL) { free(data); data = NULL; }
}
return data;
}
static inline void
free_twd(ThreadWriteData *x) {
if (x != NULL) free(x->buf);
free(x);
}
static PyObject*
monitor_pid(PyObject *self UNUSED, PyObject *args) {
long pid;
bool ok = true;
if (!PyArg_ParseTuple(args, "l", &pid)) return NULL;
children_mutex(lock);
if (monitored_pids_count >= arraysz(monitored_pids)) {
PyErr_SetString(PyExc_RuntimeError, "Too many monitored pids");
ok = false;
} else {
monitored_pids[monitored_pids_count++] = pid;
}
children_mutex(unlock);
if (!ok) return NULL;
Py_RETURN_NONE;
}
static inline void
report_reaped_pids(void) {
children_mutex(lock);
if (reaped_pids_count) {
for (size_t i = 0; i < reaped_pids_count; i++) {
call_boss(on_monitored_pid_death, "ii", (int)reaped_pids[i].pid, reaped_pids[i].status);
}
reaped_pids_count = 0;
}
children_mutex(unlock);
}
static void*
thread_write(void *x) {
ThreadWriteData *data = (ThreadWriteData*)x;
set_thread_name("KittyWriteStdin");
int flags = fcntl(data->fd, F_GETFL, 0);
if (flags == -1) { free_twd(data); return 0; }
flags &= ~O_NONBLOCK;
fcntl(data->fd, F_SETFL, flags);
size_t pos = 0;
while (pos < data->sz) {
errno = 0;
ssize_t nbytes = write(data->fd, data->buf + pos, data->sz - pos);
if (nbytes < 0) {
if (errno == EAGAIN || errno == EINTR) continue;
break;
}
if (nbytes == 0) break;
pos += nbytes;
}
if (pos < data->sz) {
log_error("Failed to write all data to STDIN of child process with error: %s", strerror(errno));
}
safe_close(data->fd, __FILE__, __LINE__);
free_twd(data);
return 0;
}
PyObject*
cm_thread_write(PyObject UNUSED *self, PyObject *args) {
static pthread_t thread;
int fd;
Py_ssize_t sz;
const char *buf;
if (!PyArg_ParseTuple(args, "is#", &fd, &buf, &sz)) return NULL;
ThreadWriteData *data = alloc_twd(sz);
if (data == NULL) return PyErr_NoMemory();
data->fd = fd;
memcpy(data->buf, buf, data->sz);
int ret = pthread_create(&thread, NULL, thread_write, data);
if (ret != 0) { safe_close(fd, __FILE__, __LINE__); free_twd(data); return PyErr_Format(PyExc_OSError, "Failed to start write thread with error: %s", strerror(ret)); }
pthread_detach(thread);
Py_RETURN_NONE;
}
static void
python_timer_callback(id_type timer_id, void *data) {
PyObject *callback = (PyObject*)data;
unsigned long long id = timer_id;
PyObject *ret = PyObject_CallFunction(callback, "K", id);
if (ret == NULL) PyErr_Print();
else Py_DECREF(ret);
}
static void
python_timer_cleanup(id_type timer_id UNUSED, void *data) {
if (data) Py_DECREF((PyObject*)data);
}
static PyObject*
add_python_timer(PyObject *self UNUSED, PyObject *args) {
PyObject *callback;
double interval;
int repeats = 1;
if (!PyArg_ParseTuple(args, "Od|p", &callback, &interval, &repeats)) return NULL;
unsigned long long timer_id = add_main_loop_timer(s_double_to_monotonic_t(interval), repeats ? true: false, python_timer_callback, callback, python_timer_cleanup);
Py_INCREF(callback);
return Py_BuildValue("K", timer_id);
}
static PyObject*
remove_python_timer(PyObject *self UNUSED, PyObject *args) {
unsigned long long timer_id;
if (!PyArg_ParseTuple(args, "K", &timer_id)) return NULL;
remove_main_loop_timer(timer_id);
Py_RETURN_NONE;
}
static inline void
process_pending_resizes(monotonic_t now) {
global_state.has_pending_resizes = false;
for (size_t i = 0; i < global_state.num_os_windows; i++) {
OSWindow *w = global_state.os_windows + i;
if (w->live_resize.in_progress) {
bool update_viewport = false;
if (w->live_resize.from_os_notification) {
if (w->live_resize.os_says_resize_complete || (now - w->live_resize.last_resize_event_at) > 1) update_viewport = true;
} else {
monotonic_t debounce_time = OPT(resize_debounce_time);
// if more than one resize event has occurred, wait at least 0.2 secs
// before repainting, to avoid rapid transitions between the cells banner
// and the normal screen
if (w->live_resize.num_of_resize_events > 1 && OPT(resize_draw_strategy) == RESIZE_DRAW_SIZE) debounce_time = MAX(ms_to_monotonic_t(200ll), debounce_time);
if (now - w->live_resize.last_resize_event_at >= debounce_time) update_viewport = true;
else {
global_state.has_pending_resizes = true;
set_maximum_wait(OPT(resize_debounce_time) - now + w->live_resize.last_resize_event_at);
}
}
if (update_viewport) {
static const LiveResizeInfo empty = {0};
update_os_window_viewport(w, true);
w->live_resize = empty;
}
}
}
}
static inline void
close_os_window(ChildMonitor *self, OSWindow *os_window) {
destroy_os_window(os_window);
call_boss(on_os_window_closed, "Kii", os_window->id, os_window->window_width, os_window->window_height);
for (size_t t=0; t < os_window->num_tabs; t++) {
Tab *tab = os_window->tabs + t;
for (size_t w = 0; w < tab->num_windows; w++) mark_child_for_close(self, tab->windows[w].id);
}
remove_os_window(os_window->id);
}
static inline bool
process_pending_closes(ChildMonitor *self) {
if (global_state.quit_request == CONFIRMABLE_CLOSE_REQUESTED) {
call_boss(quit, "");
}
if (global_state.quit_request == IMPERATIVE_CLOSE_REQUESTED) {
for (size_t w = 0; w < global_state.num_os_windows; w++) global_state.os_windows[w].close_request = IMPERATIVE_CLOSE_REQUESTED;
}
bool has_open_windows = false;
for (size_t w = global_state.num_os_windows; w > 0; w--) {
OSWindow *os_window = global_state.os_windows + w - 1;
switch(os_window->close_request) {
case NO_CLOSE_REQUESTED:
has_open_windows = true;
break;
case CONFIRMABLE_CLOSE_REQUESTED:
os_window->close_request = CLOSE_BEING_CONFIRMED;
call_boss(confirm_os_window_close, "K", os_window->id);
if (os_window->close_request == IMPERATIVE_CLOSE_REQUESTED) {
close_os_window(self, os_window);
} else has_open_windows = true;
break;
case CLOSE_BEING_CONFIRMED:
has_open_windows = true;
break;
case IMPERATIVE_CLOSE_REQUESTED:
close_os_window(self, os_window);
break;
}
}
global_state.has_pending_closes = false;
#ifdef __APPLE__
if (!OPT(macos_quit_when_last_window_closed)) {
if (!has_open_windows && global_state.quit_request != IMPERATIVE_CLOSE_REQUESTED) has_open_windows = true;
}
#endif
return !has_open_windows;
}
#ifdef __APPLE__
// If we create new OS windows during wait_events(), using global menu actions
// via the mouse causes a crash because of the way autorelease pools work in
// glfw/cocoa. So we use a flag instead.
static unsigned int cocoa_pending_actions = 0;
static char *cocoa_pending_actions_wd = NULL;
void
set_cocoa_pending_action(CocoaPendingAction action, const char *wd) {
if (wd) {
if (cocoa_pending_actions_wd) free(cocoa_pending_actions_wd);
cocoa_pending_actions_wd = strdup(wd);
}
cocoa_pending_actions |= action;
// The main loop may be blocking on the event queue, if e.g. unfocused.
// Unjam it so the pending action is processed right now.
wakeup_main_loop();
}
#endif
static void process_global_state(void *data);
static void
do_state_check(id_type timer_id UNUSED, void *data) {
EVDBG("State check timer fired");
process_global_state(data);
}
static id_type state_check_timer = 0;
static void
process_global_state(void *data) {
EVDBG("Processing global state");
ChildMonitor *self = data;
maximum_wait = -1;
bool state_check_timer_enabled = false;
bool input_read = false;
monotonic_t now = monotonic();
if (global_state.has_pending_resizes) {
process_pending_resizes(now);
input_read = true;
}
if (parse_input(self)) input_read = true;
render(now, input_read);
#ifdef __APPLE__
if (cocoa_pending_actions) {
if (cocoa_pending_actions & PREFERENCES_WINDOW) { call_boss(edit_config_file, NULL); }
if (cocoa_pending_actions & NEW_OS_WINDOW) { call_boss(new_os_window, NULL); }
if (cocoa_pending_actions & CLOSE_OS_WINDOW) { call_boss(close_os_window, NULL); }
if (cocoa_pending_actions & CLOSE_TAB) { call_boss(close_tab, NULL); }
if (cocoa_pending_actions & NEW_TAB) { call_boss(new_tab, NULL); }
if (cocoa_pending_actions & NEXT_TAB) { call_boss(next_tab, NULL); }
if (cocoa_pending_actions & PREVIOUS_TAB) { call_boss(previous_tab, NULL); }
if (cocoa_pending_actions_wd) {
if (cocoa_pending_actions & NEW_OS_WINDOW_WITH_WD) { call_boss(new_os_window_with_wd, "s", cocoa_pending_actions_wd); }
if (cocoa_pending_actions & NEW_TAB_WITH_WD) { call_boss(new_tab_with_wd, "s", cocoa_pending_actions_wd); }
free(cocoa_pending_actions_wd);
cocoa_pending_actions_wd = NULL;
}
cocoa_pending_actions = 0;
}
#endif
report_reaped_pids();
bool should_quit = false;
if (global_state.has_pending_closes) should_quit = process_pending_closes(self);
if (should_quit) {
stop_main_loop();
} else {
if (maximum_wait >= 0) {
if (maximum_wait == 0) request_tick_callback();
else state_check_timer_enabled = true;
}
}
update_main_loop_timer(state_check_timer, MAX(0, maximum_wait), state_check_timer_enabled);
}
static PyObject*
main_loop(ChildMonitor *self, PyObject *a UNUSED) {
#define main_loop_doc "The main thread loop"
state_check_timer = add_main_loop_timer(1000, true, do_state_check, self, NULL);
run_main_loop(process_global_state, self);
#ifdef __APPLE__
if (cocoa_pending_actions_wd) { free(cocoa_pending_actions_wd); cocoa_pending_actions_wd = NULL; }
#endif
if (PyErr_Occurred()) return NULL;
Py_RETURN_NONE;
}
// }}}
// I/O thread functions {{{
static inline void
add_children(ChildMonitor *self) {
for (; add_queue_count > 0 && self->count < MAX_CHILDREN;) {
add_queue_count--;
children[self->count] = add_queue[add_queue_count];
add_queue[add_queue_count] = EMPTY_CHILD;
fds[EXTRA_FDS + self->count].fd = children[self->count].fd;
fds[EXTRA_FDS + self->count].events = POLLIN;
self->count++;
}
}
static inline void
hangup(pid_t pid) {
errno = 0;
pid_t pgid = getpgid(pid);
if (errno == ESRCH) return;
if (errno != 0) { perror("Failed to get process group id for child"); return; }
if (killpg(pgid, SIGHUP) != 0) {
if (errno != ESRCH) perror("Failed to kill child");
}
}
static inline void
cleanup_child(ssize_t i) {
safe_close(children[i].fd, __FILE__, __LINE__);
hangup(children[i].pid);
}
static inline void
remove_children(ChildMonitor *self) {
if (self->count > 0) {
size_t count = 0;
for (ssize_t i = self->count - 1; i >= 0; i--) {
if (children[i].needs_removal) {
count++;
cleanup_child(i);
remove_queue[remove_queue_count] = children[i];
remove_queue_count++;
children[i] = EMPTY_CHILD;
fds[EXTRA_FDS + i].fd = -1;
size_t num_to_right = self->count - 1 - i;
if (num_to_right > 0) {
memmove(children + i, children + i + 1, num_to_right * sizeof(Child));
memmove(fds + EXTRA_FDS + i, fds + EXTRA_FDS + i + 1, num_to_right * sizeof(struct pollfd));
}
}
}
self->count -= count;
}
}
static bool
read_bytes(int fd, Screen *screen) {
ssize_t len;
size_t available_buffer_space, orig_sz;
screen_mutex(lock, read);
orig_sz = screen->read_buf_sz;
if (orig_sz >= READ_BUF_SZ) { screen_mutex(unlock, read); return true; } // screen read buffer is full
available_buffer_space = READ_BUF_SZ - orig_sz;
screen_mutex(unlock, read);
while(true) {
len = read(fd, screen->read_buf + orig_sz, available_buffer_space);
if (len < 0) {
if (errno == EINTR || errno == EAGAIN) continue;
if (errno != EIO) perror("Call to read() from child fd failed");
return false;
}
break;
}
if (UNLIKELY(len == 0)) return false;
screen_mutex(lock, read);
if (screen->new_input_at == 0) screen->new_input_at = monotonic();
if (orig_sz != screen->read_buf_sz) {
// The other thread consumed some of the screen read buffer
memmove(screen->read_buf + screen->read_buf_sz, screen->read_buf + orig_sz, len);
}
screen->read_buf_sz += len;
screen_mutex(unlock, read);
return true;
}
typedef struct { bool kill_signal, child_died; } SignalSet;
static void
handle_signal(int signum, void *data) {
SignalSet *ss = data;
switch(signum) {
case SIGINT:
case SIGTERM:
ss->kill_signal = true;
break;
case SIGCHLD:
ss->child_died = true;
break;
default:
break;
}
}
static inline void
mark_child_for_removal(ChildMonitor *self, pid_t pid) {
children_mutex(lock);
for (size_t i = 0; i < self->count; i++) {
if (children[i].pid == pid) {
children[i].needs_removal = true;
break;
}
}
children_mutex(unlock);
}
static inline void
mark_monitored_pids(pid_t pid, int status) {
children_mutex(lock);
for (ssize_t i = monitored_pids_count - 1; i >= 0; i--) {
if (pid == monitored_pids[i]) {
if (reaped_pids_count < arraysz(reaped_pids)) {
reaped_pids[reaped_pids_count].status = status;
reaped_pids[reaped_pids_count++].pid = pid;
}
remove_i_from_array(monitored_pids, (size_t)i, monitored_pids_count);
}
}
children_mutex(unlock);
}
static inline void
reap_children(ChildMonitor *self, bool enable_close_on_child_death) {
int status;
pid_t pid;
(void)self;
while(true) {
pid = waitpid(-1, &status, WNOHANG);
if (pid == -1) {
if (errno != EINTR) break;
} else if (pid > 0) {
if (enable_close_on_child_death) mark_child_for_removal(self, pid);
mark_monitored_pids(pid, status);
} else break;
}
}
static inline void
write_to_child(int fd, Screen *screen) {
size_t written = 0;
ssize_t ret = 0;
screen_mutex(lock, write);
while (written < screen->write_buf_used) {
ret = write(fd, screen->write_buf + written, screen->write_buf_used - written);
if (ret > 0) { written += ret; }
else if (ret == 0) {
// could mean anything, ignore
break;
} else {
if (errno == EINTR) continue;
if (errno == EWOULDBLOCK || errno == EAGAIN) break;
perror("Call to write() to child fd failed, discarding data.");
written = screen->write_buf_used;
}
}
if (written) {
screen->write_buf_used -= written;
if (screen->write_buf_used) {
memmove(screen->write_buf, screen->write_buf + written, screen->write_buf_used);
}
}
screen_mutex(unlock, write);
}
static void*
io_loop(void *data) {
// The I/O thread loop
size_t i;
int ret;
bool has_more, data_received, has_pending_wakeups = false;
monotonic_t last_main_loop_wakeup_at = -1, now = -1;
Screen *screen;
ChildMonitor *self = (ChildMonitor*)data;
set_thread_name("KittyChildMon");
while (LIKELY(!self->shutting_down)) {
children_mutex(lock);
remove_children(self);
add_children(self);
children_mutex(unlock);
data_received = false;
for (i = 0; i < self->count + EXTRA_FDS; i++) fds[i].revents = 0;
for (i = 0; i < self->count; i++) {
screen = children[i].screen;
/* printf("i:%lu id:%lu fd: %d read_buf_sz: %lu write_buf_used: %lu\n", i, children[i].id, children[i].fd, screen->read_buf_sz, screen->write_buf_used); */
screen_mutex(lock, read); screen_mutex(lock, write);
fds[EXTRA_FDS + i].events = (screen->read_buf_sz < READ_BUF_SZ ? POLLIN : 0) | (screen->write_buf_used ? POLLOUT : 0);
screen_mutex(unlock, read); screen_mutex(unlock, write);
}
if (has_pending_wakeups) {
now = monotonic();
monotonic_t time_delta = OPT(input_delay) - (now - last_main_loop_wakeup_at);
if (time_delta >= 0) ret = poll(fds, self->count + EXTRA_FDS, monotonic_t_to_ms(time_delta));
else ret = 0;
} else {
ret = poll(fds, self->count + EXTRA_FDS, -1);
}
if (ret > 0) {
if (fds[0].revents && POLLIN) drain_fd(fds[0].fd); // wakeup
if (fds[1].revents && POLLIN) {
SignalSet ss = {0};
data_received = true;
read_signals(fds[1].fd, handle_signal, &ss);
if (ss.kill_signal) { children_mutex(lock); kill_signal_received = true; children_mutex(unlock); }
if (ss.child_died) reap_children(self, OPT(close_on_child_death));
}
for (i = 0; i < self->count; i++) {
if (fds[EXTRA_FDS + i].revents & (POLLIN | POLLHUP)) {
data_received = true;
has_more = read_bytes(fds[EXTRA_FDS + i].fd, children[i].screen);
if (!has_more) {
// child is dead
children_mutex(lock);
children[i].needs_removal = true;
children_mutex(unlock);
}
}
if (fds[EXTRA_FDS + i].revents & POLLOUT) {
write_to_child(children[i].fd, children[i].screen);
}
if (fds[EXTRA_FDS + i].revents & POLLNVAL) {
// fd was closed
children_mutex(lock);
children[i].needs_removal = true;
children_mutex(unlock);
log_error("The child %lu had its fd unexpectedly closed", children[i].id);
}
}
#ifdef DEBUG_POLL_EVENTS
for (i = 0; i < self->count + EXTRA_FDS; i++) {
#define P(w) if (fds[i].revents & w) printf("i:%lu %s\n", i, #w);
P(POLLIN); P(POLLPRI); P(POLLOUT); P(POLLERR); P(POLLHUP); P(POLLNVAL);
#undef P
}
#endif
} else if (ret < 0) {
if (errno != EAGAIN && errno != EINTR) {
perror("Call to poll() failed");
}
}
#define WAKEUP { wakeup_main_loop(); last_main_loop_wakeup_at = now; has_pending_wakeups = false; }
// we only wakeup the main loop after input_delay as wakeup is an expensive operation
// on some platforms, such as cocoa
if (data_received) {
if ((now = monotonic()) - last_main_loop_wakeup_at > OPT(input_delay)) WAKEUP
else has_pending_wakeups = true;
} else {
if (has_pending_wakeups && (now = monotonic()) - last_main_loop_wakeup_at > OPT(input_delay)) WAKEUP
}
}
#undef WAKEUP
children_mutex(lock);
for (i = 0; i < self->count; i++) children[i].needs_removal = true;
remove_children(self);
children_mutex(unlock);
return 0;
}
// }}}
// {{{ Talk thread functions
typedef struct {
id_type id;
size_t num_of_unresponded_messages_sent_to_main_thread;
bool finished_reading;
int fd;
struct {
char *data;
size_t capacity, used, command_end;
bool finished;
} read;
struct {
char *data;
size_t capacity, used;
bool failed;
} write;
} Peer;
static id_type peer_id_counter = 0;
typedef struct {
size_t num_peers, peers_capacity;
Peer *peers;
LoopData loop_data;
} TalkData;
static TalkData talk_data = {0};
typedef struct pollfd PollFD;
#define PEER_LIMIT 256
#define nuke_socket(s) { shutdown(s, SHUT_RDWR); safe_close(s, __FILE__, __LINE__); }
static inline bool
accept_peer(int listen_fd, bool shutting_down) {
int peer = accept(listen_fd, NULL, NULL);
if (UNLIKELY(peer == -1)) {
if (errno == EINTR) return true;
if (!shutting_down) perror("accept() on talk socket failed!");
return false;
}
if (talk_data.num_peers < PEER_LIMIT) {
ensure_space_for(&talk_data, peers, Peer, talk_data.num_peers + 8, peers_capacity, 8, false);
Peer *p = talk_data.peers + talk_data.num_peers++;
memset(p, 0, sizeof(Peer));
p->fd = peer; p->id = ++peer_id_counter;
if (!p->id) p->id = ++peer_id_counter;
} else {
log_error("Too many peers want to talk, ignoring one.");
nuke_socket(peer);
}
return true;
}
static inline void
free_peer(Peer *peer) {
free(peer->read.data); peer->read.data = NULL;
free(peer->write.data); peer->write.data = NULL;
if (peer->fd > -1) { nuke_socket(peer->fd); peer->fd = -1; }
}
#define KITTY_CMD_PREFIX "\x1bP@kitty-cmd{"
static inline void
queue_peer_message(ChildMonitor *self, Peer *peer) {
talk_mutex(lock);
ensure_space_for(self, messages, Message, self->messages_count + 16, messages_capacity, 16, true);
Message *m = self->messages + self->messages_count++;
memset(m, 0, sizeof(Message));
if (peer->read.used) {
m->data = malloc(peer->read.used);
if (m->data) {
memcpy(m->data, peer->read.data, peer->read.used);
m->sz = peer->read.used;
}
}
m->peer_id = peer->id;
peer->num_of_unresponded_messages_sent_to_main_thread++;
talk_mutex(unlock);
wakeup_main_loop();
}
static inline bool
has_complete_peer_command(Peer *peer) {
peer->read.command_end = 0;
if (peer->read.used > sizeof(KITTY_CMD_PREFIX) && memcmp(peer->read.data, KITTY_CMD_PREFIX, sizeof(KITTY_CMD_PREFIX)-1) == 0) {
for (size_t i = sizeof(KITTY_CMD_PREFIX)-1; i < peer->read.used - 1; i++) {
if (peer->read.data[i] == 0x1b && peer->read.data[i+1] == '\\') {
peer->read.command_end = i + 2;
break;
}
}
}
return peer->read.command_end ? true : false;
}
static inline void
dispatch_peer_command(ChildMonitor *self, Peer *peer) {
if (peer->read.command_end) {
size_t used = peer->read.used;
peer->read.used = peer->read.command_end;
queue_peer_message(self, peer);
peer->read.used = used;
if (peer->read.used > peer->read.command_end) {
peer->read.used -= peer->read.command_end;
memmove(peer->read.data, peer->read.data + peer->read.command_end, peer->read.used);
} else peer->read.used = 0;
peer->read.command_end = 0;
}
}
static inline void
read_from_peer(ChildMonitor *self, Peer *peer) {
#define failed(msg) { log_error("Reading from peer failed: %s", msg); shutdown(peer->fd, SHUT_RD); peer->read.finished = true; return; }
if (peer->read.used >= peer->read.capacity) {
if (peer->read.capacity >= 64 * 1024) failed("Ignoring too large message from peer");
peer->read.capacity = MAX(8192u, peer->read.capacity * 2);
peer->read.data = realloc(peer->read.data, peer->read.capacity);
if (!peer->read.data) failed("Out of memory");
}
ssize_t n = recv(peer->fd, peer->read.data + peer->read.used, peer->read.capacity - peer->read.used, 0);
if (n == 0) {
peer->read.finished = true;
shutdown(peer->fd, SHUT_RD);
while (has_complete_peer_command(peer)) dispatch_peer_command(self, peer);
queue_peer_message(self, peer);
free(peer->read.data); peer->read.data = NULL;
peer->read.used = 0; peer->read.capacity = 0;
} else if (n < 0) {
if (errno != EINTR) failed(strerror(errno));
} else {
peer->read.used += n;
while (has_complete_peer_command(peer)) dispatch_peer_command(self, peer);
}
#undef failed
}
static inline void
write_to_peer(Peer *peer) {
talk_mutex(lock);
ssize_t n = send(peer->fd, peer->write.data, peer->write.used, MSG_NOSIGNAL);
if (n == 0) { log_error("send() to peer failed to send any data"); peer->write.used = 0; peer->write.failed = true; }
else if (n < 0) {
if (errno != EINTR) { log_error("write() to peer socket failed with error: %s", strerror(errno)); peer->write.used = 0; peer->write.failed = true; }
} else {
if ((size_t)n > peer->write.used) memmove(peer->write.data, peer->write.data + n, peer->write.used - n);
peer->write.used -= n;
}
talk_mutex(unlock);
}
static void
wakeup_talk_loop(bool in_signal_handler) {
if (talk_thread_started) wakeup_loop(&talk_data.loop_data, in_signal_handler, "talk_loop");
}
static inline void
prune_peers(void) {
for (size_t i = 0; i < talk_data.num_peers; i++) {
size_t idx = talk_data.num_peers - 1 - i;
Peer *p = talk_data.peers + idx;
if (p->read.finished && !p->num_of_unresponded_messages_sent_to_main_thread && !p->write.used) {
free_peer(p);
remove_i_from_array(talk_data.peers, idx, talk_data.num_peers);
}
}
}
static void*
talk_loop(void *data) {
// The talk thread loop
ChildMonitor *self = (ChildMonitor*)data;
set_thread_name("KittyPeerMon");
if (!init_loop_data(&talk_data.loop_data)) { log_error("Failed to create wakeup fd for talk thread with error: %s", strerror(errno)); }
PollFD fds[PEER_LIMIT + 8] = {0};
size_t num_listen_fds = 0, num_peer_fds = 0;
#define add_listener(which) \
if (self->which > -1) { \
fds[num_listen_fds].fd = self->which; fds[num_listen_fds++].events = POLLIN; \
}
add_listener(talk_fd); add_listener(listen_fd);
#undef add_listener
fds[num_listen_fds].fd = talk_data.loop_data.wakeup_read_fd; fds[num_listen_fds++].events = POLLIN;
while (LIKELY(!self->shutting_down)) {
num_peer_fds = 0;
if (talk_data.num_peers > 0) {
talk_mutex(lock);
prune_peers();
for (size_t i = 0; i < talk_data.num_peers; i++) {
Peer *p = talk_data.peers + i;
if (!p->read.finished || p->write.used) {
fds[num_listen_fds + num_peer_fds].fd = p->fd;
fds[num_listen_fds + num_peer_fds].revents = 0;
int flags = 0;
if (!p->read.finished) flags |= POLLIN;
if (p->write.used) flags |= POLLOUT;
fds[num_listen_fds + num_peer_fds++].events = flags;
}
}
talk_mutex(unlock);
}
for (size_t i = 0; i < num_listen_fds; i++) fds[i].revents = 0;
int ret = poll(fds, num_listen_fds + num_peer_fds, -1);
if (ret > 0) {
for (size_t i = 0; i < num_listen_fds - 1; i++) {
if (fds[i].revents & POLLIN) {
if (!accept_peer(fds[i].fd, self->shutting_down)) goto end;
}
}
if (fds[num_listen_fds - 1].revents & POLLIN) {
drain_fd(fds[num_listen_fds - 1].fd); // wakeup
}
for (size_t i = num_listen_fds, k = 0; i < num_peer_fds + num_listen_fds; i++, k++) {
Peer *p = talk_data.peers + k;
if (fds[i].revents & (POLLIN | POLLHUP)) read_from_peer(self, p);
if (fds[i].revents & POLLOUT) write_to_peer(p);
if (fds[i].revents & POLLNVAL) {
p->read.finished = true;
p->write.failed = true; p->write.used = 0;
}
}
} else if (ret < 0) { if (errno != EAGAIN && errno != EINTR) perror("poll() on talk fds failed"); }
}
end:
free_loop_data(&talk_data.loop_data);
for (size_t i = 0; i < talk_data.num_peers; i++) free_peer(talk_data.peers + i);
free(talk_data.peers);
return 0;
}
static void
send_response(id_type peer_id, const char *msg, size_t msg_sz) {
bool wakeup = false;
talk_mutex(lock);
for (size_t i = 0; i < talk_data.num_peers; i++) {
Peer *peer = talk_data.peers + i;
if (peer->id == peer_id) {
if (peer->num_of_unresponded_messages_sent_to_main_thread) peer->num_of_unresponded_messages_sent_to_main_thread--;
if (!peer->write.failed) {
if (peer->write.capacity - peer->write.used < msg_sz) {
void *data = realloc(peer->write.data, peer->write.capacity + msg_sz);
if (data) {
peer->write.data = data;
peer->write.capacity += msg_sz;
} else fatal("Out of memory");
}
if (msg) memcpy(peer->write.data + peer->write.used, msg, msg_sz);
peer->write.used += msg_sz;
}
wakeup = true;
break;
}
}
talk_mutex(unlock);
if (wakeup) wakeup_talk_loop(false);
}
// }}}
// Boilerplate {{{
static PyMethodDef methods[] = {
METHOD(add_child, METH_VARARGS)
METHOD(needs_write, METH_VARARGS)
METHOD(start, METH_NOARGS)
METHOD(wakeup, METH_NOARGS)
METHOD(shutdown_monitor, METH_NOARGS)
METHOD(main_loop, METH_NOARGS)
METHOD(mark_for_close, METH_VARARGS)
METHOD(resize_pty, METH_VARARGS)
{"set_iutf8_winid", (PyCFunction)pyset_iutf8, METH_VARARGS, ""},
{NULL} /* Sentinel */
};
PyTypeObject ChildMonitor_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "fast_data_types.ChildMonitor",
.tp_basicsize = sizeof(ChildMonitor),
.tp_dealloc = (destructor)dealloc,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = "ChildMonitor",
.tp_methods = methods,
.tp_new = new,
};
static PyObject*
safe_pipe(PyObject *self UNUSED, PyObject *args) {
int nonblock = 1;
if (!PyArg_ParseTuple(args, "|p", &nonblock)) return NULL;
int fds[2] = {0};
if (!self_pipe(fds, nonblock)) return PyErr_SetFromErrno(PyExc_OSError);
return Py_BuildValue("ii", fds[0], fds[1]);
}
static PyObject*
cocoa_set_menubar_title(PyObject *self UNUSED, PyObject *args UNUSED) {
#ifdef __APPLE__
PyObject *title = NULL;
if (!PyArg_ParseTuple(args, "U", &title)) return NULL;
change_menubar_title(title);
#endif
Py_RETURN_NONE;
}
static PyMethodDef module_methods[] = {
METHODB(safe_pipe, METH_VARARGS),
{"add_timer", (PyCFunction)add_python_timer, METH_VARARGS, ""},
{"remove_timer", (PyCFunction)remove_python_timer, METH_VARARGS, ""},
METHODB(monitor_pid, METH_VARARGS),
METHODB(cocoa_set_menubar_title, METH_VARARGS),
{NULL} /* Sentinel */
};
bool
init_child_monitor(PyObject *module) {
if (PyType_Ready(&ChildMonitor_Type) < 0) return false;
if (PyModule_AddObject(module, "ChildMonitor", (PyObject *)&ChildMonitor_Type) != 0) return false;
Py_INCREF(&ChildMonitor_Type);
if (PyModule_AddFunctions(module, module_methods) != 0) return false;
return true;
}
// }}}