2023-01-05 19:15:13 +05:30

428 lines
10 KiB
Go

// License: GPLv3 Copyright: 2023, Kovid Goyal, <kovid at kovidgoyal.net>
package images
import (
"fmt"
"image"
"image/color"
)
var _ = fmt.Print
type NRGBColor struct {
R, G, B uint8
}
func (c NRGBColor) AsSharp() string {
return fmt.Sprintf("#%02X%02X%02X", c.R, c.G, c.B)
}
func (c NRGBColor) RGBA() (r, g, b, a uint32) {
r = uint32(c.R)
r |= r << 8
g = uint32(c.G)
g |= g << 8
b = uint32(c.B)
b |= b << 8
a = 65280 // ( 255 << 8 )
return
}
// NRGB is an in-memory image whose At method returns NRGBColor values.
type NRGB struct {
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
Pix []uint8
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
Stride int
// Rect is the image's bounds.
Rect image.Rectangle
}
func nrgbModel(c color.Color) color.Color {
if _, ok := c.(NRGBColor); ok {
return c
}
r, g, b, a := c.RGBA()
if a == 0xffff {
return NRGBColor{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)}
}
if a == 0 {
return NRGBColor{0, 0, 0}
}
// Since Color.RGBA returns an alpha-premultiplied color, we should have r <= a && g <= a && b <= a.
r = (r * 0xffff) / a
g = (g * 0xffff) / a
b = (b * 0xffff) / a
return NRGBColor{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)}
}
var NRGBModel color.Model = color.ModelFunc(nrgbModel)
func (p *NRGB) ColorModel() color.Model { return NRGBModel }
func (p *NRGB) Bounds() image.Rectangle { return p.Rect }
func (p *NRGB) At(x, y int) color.Color {
return p.NRGBAt(x, y)
}
func (p *NRGB) NRGBAt(x, y int) NRGBColor {
if !(image.Point{x, y}.In(p.Rect)) {
return NRGBColor{}
}
i := p.PixOffset(x, y)
s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
return NRGBColor{s[0], s[1], s[2]}
}
// PixOffset returns the index of the first element of Pix that corresponds to
// the pixel at (x, y).
func (p *NRGB) PixOffset(x, y int) int {
return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
}
func (p *NRGB) Set(x, y int, c color.Color) {
if !(image.Point{x, y}.In(p.Rect)) {
return
}
i := p.PixOffset(x, y)
c1 := NRGBModel.Convert(c).(NRGBColor)
s := p.Pix[i : i+3 : i+3] // Small cap improves performance, see https://golang.org/issue/27857
s[0] = c1.R
s[1] = c1.G
s[2] = c1.B
}
func (p *NRGB) SetRGBA64(x, y int, c color.RGBA64) {
if !(image.Point{x, y}.In(p.Rect)) {
return
}
r, g, b, a := uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A)
if (a != 0) && (a != 0xffff) {
r = (r * 0xffff) / a
g = (g * 0xffff) / a
b = (b * 0xffff) / a
}
i := p.PixOffset(x, y)
s := p.Pix[i : i+3 : i+3] // Small cap improves performance, see https://golang.org/issue/27857
s[0] = uint8(r >> 8)
s[1] = uint8(g >> 8)
s[2] = uint8(b >> 8)
}
func (p *NRGB) SetNRGBA(x, y int, c color.NRGBA) {
if !(image.Point{x, y}.In(p.Rect)) {
return
}
i := p.PixOffset(x, y)
s := p.Pix[i : i+3 : i+3] // Small cap improves performance, see https://golang.org/issue/27857
s[0] = c.R
s[1] = c.G
s[2] = c.B
}
// SubImage returns an image representing the portion of the image p visible
// through r. The returned value shares pixels with the original image.
func (p *NRGB) SubImage(r image.Rectangle) image.Image {
r = r.Intersect(p.Rect)
// If r1 and r2 are Rectangles, r1.Intersect(r2) is not guaranteed to be inside
// either r1 or r2 if the intersection is empty. Without explicitly checking for
// this, the Pix[i:] expression below can panic.
if r.Empty() {
return &NRGB{}
}
i := p.PixOffset(r.Min.X, r.Min.Y)
return &NRGB{
Pix: p.Pix[i:],
Stride: p.Stride,
Rect: r,
}
}
// Opaque scans the entire image and reports whether it is fully opaque.
func (p *NRGB) Opaque() bool { return true }
type scanner_rgb struct {
image image.Image
w, h int
palette []NRGBColor
opaque_base []float64
opaque_base_uint []uint8
}
func (s scanner_rgb) bytes_per_pixel() int { return 3 }
func (s scanner_rgb) bounds() image.Rectangle { return s.image.Bounds() }
func blend(dest []uint8, base []float64, r, g, b, a uint8) {
alpha := float64(a) / 255.0
dest[0] = uint8(alpha*float64(r) + (1.0-alpha)*base[0])
dest[1] = uint8(alpha*float64(g) + (1.0-alpha)*base[1])
dest[2] = uint8(alpha*float64(b) + (1.0-alpha)*base[2])
}
func newScannerRGB(img image.Image, opaque_base NRGBColor) *scanner_rgb {
s := &scanner_rgb{
image: img, w: img.Bounds().Dx(), h: img.Bounds().Dy(),
opaque_base: []float64{float64(opaque_base.R), float64(opaque_base.G), float64(opaque_base.B)}[0:3:3],
opaque_base_uint: []uint8{opaque_base.R, opaque_base.G, opaque_base.B}[0:3:3],
}
if img, ok := img.(*image.Paletted); ok {
s.palette = make([]NRGBColor, len(img.Palette))
d := make([]uint8, 3)
for i := 0; i < len(img.Palette); i++ {
r, g, b, a := img.Palette[i].RGBA()
switch a {
case 0:
s.palette[i] = opaque_base
default:
blend(d, s.opaque_base, uint8((r*0xffff/a)>>8), uint8((g*0xffff/a)>>8), uint8((b*0xffff/a)>>8), uint8(a>>8))
s.palette[i] = NRGBColor{d[0], d[1], d[2]}
}
}
}
return s
}
// scan scans the given rectangular region of the image into dst.
func (s *scanner_rgb) scan(x1, y1, x2, y2 int, dst []uint8) {
switch img := s.image.(type) {
case *image.NRGBA:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*4
for x := x1; x < x2; x++ {
blend(dst[j:j+3:j+3], s.opaque_base, img.Pix[i], img.Pix[i+1], img.Pix[i+2], img.Pix[i+3])
j += 3
i += 4
}
}
case *image.NRGBA64:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*8
for x := x1; x < x2; x++ {
blend(dst[j:j+3:j+3], s.opaque_base, img.Pix[i], img.Pix[i+2], img.Pix[i+4], img.Pix[i+6])
j += 3
i += 8
}
}
case *image.RGBA:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*4
for x := x1; x < x2; x++ {
d := dst[j : j+3 : j+3]
a := img.Pix[i+3]
switch a {
case 0:
d[0] = s.opaque_base_uint[0]
d[1] = s.opaque_base_uint[1]
d[2] = s.opaque_base_uint[2]
case 0xff:
s := img.Pix[i : i+3 : i+3]
d[0] = s[0]
d[1] = s[1]
d[2] = s[2]
default:
r16 := uint16(img.Pix[i])
g16 := uint16(img.Pix[i+1])
b16 := uint16(img.Pix[i+2])
a16 := uint16(a)
blend(d, s.opaque_base, uint8(r16*0xff/a16), uint8(g16*0xff/a16), uint8(b16*0xff/a16), a)
}
j += 3
i += 4
}
}
case *image.RGBA64:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*8
for x := x1; x < x2; x++ {
src := img.Pix[i : i+8 : i+8]
d := dst[j : j+3 : j+3]
a := src[6]
switch a {
case 0:
d[0] = s.opaque_base_uint[0]
d[1] = s.opaque_base_uint[1]
d[2] = s.opaque_base_uint[2]
case 0xff:
d[0] = src[0]
d[1] = src[2]
d[2] = src[4]
default:
r32 := uint32(src[0])<<8 | uint32(src[1])
g32 := uint32(src[2])<<8 | uint32(src[3])
b32 := uint32(src[4])<<8 | uint32(src[5])
a32 := uint32(src[6])<<8 | uint32(src[7])
blend(d, s.opaque_base, uint8((r32*0xffff/a32)>>8), uint8((g32*0xffff/a32)>>8), uint8((b32*0xffff/a32)>>8), a)
}
j += 3
i += 8
}
}
case *image.Gray:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1
for x := x1; x < x2; x++ {
c := img.Pix[i]
d := dst[j : j+3 : j+3]
d[0] = c
d[1] = c
d[2] = c
j += 3
i++
}
}
case *image.Gray16:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1*2
for x := x1; x < x2; x++ {
c := img.Pix[i]
d := dst[j : j+3 : j+3]
d[0] = c
d[1] = c
d[2] = c
j += 3
i += 2
}
}
case *image.YCbCr:
j := 0
x1 += img.Rect.Min.X
x2 += img.Rect.Min.X
y1 += img.Rect.Min.Y
y2 += img.Rect.Min.Y
hy := img.Rect.Min.Y / 2
hx := img.Rect.Min.X / 2
for y := y1; y < y2; y++ {
iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X)
var yBase int
switch img.SubsampleRatio {
case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio422:
yBase = (y - img.Rect.Min.Y) * img.CStride
case image.YCbCrSubsampleRatio420, image.YCbCrSubsampleRatio440:
yBase = (y/2 - hy) * img.CStride
}
for x := x1; x < x2; x++ {
var ic int
switch img.SubsampleRatio {
case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio440:
ic = yBase + (x - img.Rect.Min.X)
case image.YCbCrSubsampleRatio422, image.YCbCrSubsampleRatio420:
ic = yBase + (x/2 - hx)
default:
ic = img.COffset(x, y)
}
yy1 := int32(img.Y[iy]) * 0x10101
cb1 := int32(img.Cb[ic]) - 128
cr1 := int32(img.Cr[ic]) - 128
r := yy1 + 91881*cr1
if uint32(r)&0xff000000 == 0 {
r >>= 16
} else {
r = ^(r >> 31)
}
g := yy1 - 22554*cb1 - 46802*cr1
if uint32(g)&0xff000000 == 0 {
g >>= 16
} else {
g = ^(g >> 31)
}
b := yy1 + 116130*cb1
if uint32(b)&0xff000000 == 0 {
b >>= 16
} else {
b = ^(b >> 31)
}
d := dst[j : j+3 : j+3]
d[0] = uint8(r)
d[1] = uint8(g)
d[2] = uint8(b)
iy++
j += 3
}
}
case *image.Paletted:
j := 0
for y := y1; y < y2; y++ {
i := y*img.Stride + x1
for x := x1; x < x2; x++ {
c := s.palette[img.Pix[i]]
d := dst[j : j+3 : j+3]
d[0] = c.R
d[1] = c.G
d[2] = c.B
j += 3
i++
}
}
default:
j := 0
b := s.image.Bounds()
x1 += b.Min.X
x2 += b.Min.X
y1 += b.Min.Y
y2 += b.Min.Y
for y := y1; y < y2; y++ {
for x := x1; x < x2; x++ {
r16, g16, b16, a16 := s.image.At(x, y).RGBA()
d := dst[j : j+3 : j+3]
switch a16 {
case 0xffff:
d[0] = uint8(r16 >> 8)
d[1] = uint8(g16 >> 8)
d[2] = uint8(b16 >> 8)
case 0:
d[0] = s.opaque_base_uint[0]
d[1] = s.opaque_base_uint[1]
d[2] = s.opaque_base_uint[2]
default:
blend(d, s.opaque_base, uint8(((r16*0xffff)/a16)>>8), uint8(((g16*0xffff)/a16)>>8), uint8(((b16*0xffff)/a16)>>8), uint8(a16>>8))
}
j += 3
}
}
}
}
func (self *Context) paste_nrgb_onto_opaque(background *NRGB, img image.Image, pos image.Point, bgcol *NRGBColor) {
bg := NRGBColor{}
if bgcol != nil {
bg = *bgcol
}
src := newScannerRGB(img, bg)
self.run_paste(src, background, pos, func(dst []byte) {})
}
func NewNRGB(r image.Rectangle) *NRGB {
return &NRGB{
Pix: make([]uint8, 3*r.Dx()*r.Dy()),
Stride: 3 * r.Dx(),
Rect: r,
}
}