diff --git a/Makefile b/Makefile index fe9b2557f..f9981c48c 100644 --- a/Makefile +++ b/Makefile @@ -22,6 +22,9 @@ debug: asan: python3 setup.py build $(VVAL) --debug --sanitize +profile: + python3 setup.py build $(VVAL) --profile + logo/kitty.iconset/icon_256x256.png: logo/kitty.svg logo/make.py logo/make.py diff --git a/README.asciidoc b/README.asciidoc index 35783cbe5..f7f2f7b82 100644 --- a/README.asciidoc +++ b/README.asciidoc @@ -350,8 +350,8 @@ and ``input_delay``. These control the artificial delays introduced into the render loop to reduce CPU usage. See the link:kitty/kitty.conf[config file] for details. You can generate detailed per-function performance data using -link:https://github.com/gperftools/gperftools[gperftools]. Build kitty with the -`--profile` flag which will create an executable called `kitty-profile`. Run +link:https://github.com/gperftools/gperftools[gperftools]. Build kitty with +`make profile` which will create an executable called `kitty-profile`. Run that and perform the task you want to analyse, for example, scrolling a large file with `less`. After you quit, function call statistics will be printed to `stdout` and you can use tools like *kcachegrind* for more detailed analysis.